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Introduction 
 

A set of tools for the processing and analyses of remote sensing imagery and optimising the in situ 
data collection activities have been expanded upon and developed within the SIBYL project. 

A virtual platform, composed by different modules tightly interconnected, is currently being 
developed by GFZ and in this document a brief overview of the available tools composing the 
platform is provided. 

The platform, named REM (Rapid Environmental Mapping) aims at providing a modular and 
efficient solution for Civil Protection (CP) agencies and other risk practitioners concerned with 
natural hazards. The development of the REM platform stems from the observation that in real-
world risk-assessment applications, a critical role is played by the exposure and vulnerability 
model. A poor (incomplete, sparse, uncertain) knowledge of the geographical area exposed to 
natural hazards such as earthquakes or floods will certainly result in uncertain estimates of the 
potential consequences. 

The development of exposure models traditionally entails the collection of a significant amount of 
data in the field, with engineering procedures that have been developed for single (usually critical) 
structures. Since these procedures do not scale well with the geographical extent of a risk-
assessment application, the resulting burden (both economical and in terms of resources) might 
hinder the whole process. 

It is therefore of paramount importance to ensure the provision of methodologies, technologies and 
tools able to streamline the exposure modelling process while ensuring a satisfactory level of 
accuracy and timeliness. 

In the first section of this document the main structure of the REM platform will be described and 
discussed. Since a critical component of the platform is the database, a section is devoted to 
describing and discussing its structure and features. The components developed or upgraded 
within the SIBYL projects will then be presented in the subsequent sections. In the last section an 
outlook of the research and development currently in progress to further advance the REM 
platform is provided and discussed. A reading list is also provided for the interested reader. 
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The REM Platform 
 

In the following, the main structure of the REM platform is introduced, and the current components 
are described. The platform is continuously evolving while new functionalities are added. 

 

Main components 

 

The main components of REM platform are depicted in Figure 1. The core of the system is 
represented by the database, which hosts the assets data (geometry, attributes and qualifiers) and 
the collected images. 

 

 
Figure 1 The main components of the REM (Rapid Environmental Monitoring) platform. 

 

REM Database 

 

The database model has been designed to serve the needs for efficient storage and management 
of data represented at different spatial scales and changing over time. It forms the basis for the 
implementation of a multi-resolution sampling framework. 
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The implementation is based on the free and open-source, unix-based and object-relational 

database management system PostgreSQL
1
. It supports most Structured Query Language (SQL) 

constructs, including sub selects, transactions and user-defined types and functions as well as 
many standard data types including date / time types. The latest database schema, shown in 
Figure 2, can be downloaded directly from the git source: 

https://github.com/GFZ-Centre-for-Early-Warning/REM_DBschema 

 

 

Figure 2 REM database schema. The three table groups refer to the main entities in the database: 
taxonomy, assets and images. 

 

For spatial functions, the free and open-source spatial database extension PostGIS
2
 is applied. It 

adds support for geographic objects to the PostgreSQL object-relational database. PostGIS 
follows the OpenGIS “Simple Features Specification for SQL” and since version 2.0 supports both 
vector and raster objects and related spatial query capabilities. Also, topological models are 

1
 http://www.postgresql.org/ 

2
 http://postgis.net/ 
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supported to handle objects with shared boundaries. To deal with the multi-representation of 
spatial objects, a bottom-up approach is followed where datasets of different resolution are linked 
by using additional attributes, which identify the corresponding objects in the lower levels of detail. 
Two cases of multi-resolution datasets can be distinguished and are supported by the database 
prototype. First, datasets at different resolutions are generated independently and need to be 
linked in the database by matching procedures. Second, lower resolution representations are 
derived from higher resolution data by generalization functions and their link is established by the 
generalization process. 

The database model has been designed to be able to integrate and manage various kinds of 
indicators that follow possibly different standard taxonomies which are, moreover, likely to depend 
on the type of hazard and/or on the considered phase of the disaster management cycle (pre-
disaster vulnerability, post-disaster recovery and reconstruction). In its current implementation, the 
model could be validated against the GEM Building Taxonomy. However, minor adjustments were 
needed to the prototype model in order to fit the final list of indicators to be agreed upon in the next 
phase of the project. 

The database model is structured into three schemas. The asset schema contains the main 
description of the database objects, their spatial reference and representations at different 
resolutions. Besides the spatial properties, the assets are characterized by attributes and qualifier 
values which are defined within the taxonomy schema. 

 

Assets taxonomy 

 

The database model is intended to integrate and manage various kinds of structural and non-
structural features of the exposed assets which are relevant for describing and monitoring 
exposure and vulnerability to earthquakes (and other natural hazards). The specific indicators 
should follow standard existing taxonomies, which are likely to depend on the type of hazard 
and/or on the considered phase of the disaster management cycle (pre-disaster vulnerability, post-
disaster recovery and reconstruction). 

The project SIBYL focuses on building structures that are mostly used for residential purposes. As 
a basis, the earthquake-focused taxonomy originally developed with the GEM (Global Earthquake 

Model
3
) has been proposed. 

The GEM Taxonomy has been designed to describe hundreds of building typologies with a global 
scope, so it is well positioned to be further extended to other hazards, and can be organized as a 
series of expandable tables, which contain various attributes referring to specific building 
characteristics. The specific states of the attributes are given by the values which are represented 
by unique IDs in alphanumeric format associated with the corresponding text descriptions. The 
taxonomy allows one to describe buildings at different levels of detail, where the number of 
attributes or the depth of information to be captured depends on the aim of the study, available 
data sources, and the type of data collection approach. More details and a full list of attributes and 
associated values included in the GEM Building Taxonomy can be found in Brzev et al. (2012). 

3
 http://www.globalquakemodel.org/ 
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Taxonomy attributes are organized in a dictionary table (taxonomy.dic_attribute_type) within the 
relational database. Each attribute type is assigned a unique ID in alphanumeric format and is 
linked to a textual description. Optional columns to specify the attribute level (in case of multi-level 
taxonomies such as the GEM Taxonomy) and attribute order (in case a specific output string 
needs to be generated from a set of attributes for non-database applications, this column provides 
an indication about the order in which the attributes need to be assembled) are provided. 
Categorical attribute values (taxonomy.dic_attribute_value) are stored in a separate dictionary 
table and are also defined by unique IDs and linked with a textual description. Numeric or textual 
attribute values are inserted for the single object primitives directly in the table object.main_detail. 
Each attribute type needs to be associated with one or more hazard types (taxonomy.hazard) and 
be linked to a specific taxonomy (taxonomy.dic_taxonomy) in order to clearly categorize the 
attributes and to identify their source and application. 

In addition to attribute types and values, object qualifiers are also defined within the taxonomy 
schema of the database prototype. Qualifiers in the context of this work refer to additional 
descriptors of object primitives that are independent of the type of hazard and the application. 
They are more closely linked to uncertainty treatment and knowledge life-cycle management. 
Potential qualifiers to be supported could include accuracy, precision, quality or valid time. 
Qualifier types (taxonomy.dic_qualifier_type) are defined by unique IDs and linked with a textual 
description. The specific states of the qualifier types are given by values which are stored in a 
separate dictionary table (taxonomy.dic_qualifier_value) in case of categorical variables. Numeric 
or textual qualifier values are inserted for the single object primitives directly in the table 
object.main_detail_qualifier. 

The current attributes and the respective values are listed in Appendix A. 

 

Information life-cycle support 

 

In order to allow for a detailed description of the temporal variability within objects, a bi-temporal 
representation of time with transaction time and valid time has been implemented at the primitive 
spatial object level. Valid time is considered as an object qualifier and is therefore specified for 
each record by qualifier timestamps. Valid time refers to real-world timestamps and therefore, 
unlike the transaction time, it needs to be set for each record (i.e., each entry in the database) by 
the user or the application that inserts or updates the records as a consequence of a real world 
change. Therefore, even continuous real world changes are detected in discrete steps in the 
database. This is, however, in line with the envisaged remote sensing application for which the 
database is intended to, because remote sensing analysis itself is dependent on the (stepwise) 
acquisition time of satellite images over an area of interest. Moreover, the satellites have specific 
revisit periods or temporal resolutions which depend on their orbit, sensor specifications and 
number of satellites (in case of a satellite constellation) and which practically define the maximum 
level of temporal granularity. In order to define the lifespan of real world objects, two valid 
timestamps are set in the object.main_detail_qualifier table: “valid from” (qualifier_timestamp_1) 
and “valid to” (qualifier_timestamp_2). “Valid from” is defined after insert of a record and “valid to” 
is defined before delete of a record. 
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To be able to keep track of the history of the real world objects, a live-history approach is followed. 
This means that deleted or changed records are archived in the history schema along with 
additional information about the corresponding database transaction. A generic trigger function 
history.if_modified_func() was defined which archives the records and logs transaction time and 
optional additional information about changes to selected tables and attributes. The function is 

based onPostgreSQL audit trigger
4
 and was modified according to the requirements of this project. 

The logging of transactions can be done at a statement level or a row level. Control is for each 
logged table separately and columns to be logged can be specified individually. Row values are 
recorded as hstore fields instead of text, which allows for more sophisticated queries on the history 
and reduces query complexity and storage space. The logged information includes the following: 

• Schema name, table name, table OID, transaction ID: identifiers for the changed table and 
transaction. 

• Transaction user: session user name. 

• Transaction time: current timestamp to log the start time of the transaction. 

• Transaction query: optional the query text can be logged. 

• Transaction type: INSERT, UPDATE, DELETE, TRUNCATE. 

• Old record: row value before the change or after in case of INSERT. 

• New record: new values of the changed columns in case of UPDATE. 

• Changed fields: field affected by the change. 

The combination of a bi-temporal data model with a live-history approach allows for the straight 
forward recovery of former states of the database at defined transaction or valid times and for 
sophisticated temporal queries. A set of functions have been implemented to exemplify the 
querying of transaction and valid time, temporal properties and temporal relationships. Preliminary 
temporal query functions include the following. 

 

• ttime_inside(ttime_from, ttime_to): This function selects from history.logged_actions the 
records that have been modified in the logged tables at some timestamp inside the defined 
transaction time range. For each record the latest version within the defined transaction time 
range is selected. 

• ttime_equal(ttime): This function selects from history.logged_actions the records that have 
been modified in the logged tables at a timestamp that equals the defined transaction time. 

• ttime_gethistory():  This function selects from history.logged_actions all records that have been 
modified in the logged tables. It provides with the transaction time history. 

• vtime_inside(vtime_from, vtime_to): This function selects from history.logged_actions the 
records that have been subject to a real world change at some timestamp inside the defined 
valid time range. For each record the latest version within the defined valid time range is 
selected. 

4
 http://wiki.postgresql.org/wiki/Audit_trigger_91plus 
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• vtime_intersect(vtime_from, vtime_to): This function selects from history.logged_actions the 
records that have been subject to a real world change at some timestamp that intersects with 
the defined valid time range. For each record the latest version within the defined valid time 
range is selected. 

• vtime_equal(ttime_from, ttime_to): This function selects from history.logged_actions the 
records that have a valid time range that equals the defined valid time range. 

• vtime_gethistory(): This function selects from history.logged_actions all records that have been 
subject to a real world change. For each record the latest version at each valid time is 
selected. It provides with the valid time history. 
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Main operational tools 
  

Survey planning 

  

During the survey planning phase the following processing tools can be used: 

1. REM SATEX tool. Provided as a QGIS plugin, this tool allows the user to obtain a preliminary 
Land Use/Land Cover (LULC) stratification of a wide geographic area by supervised 
classification of LANDSAT imagery; 

2. REM routing tool. This tool allows to the user generate optimized routes based on a set of 
sampling points, possibly generated according to the stratification produced by the SATEX tool. 

 

REM_SATEX tool 

 

This plugin provides two algorithms for the processing of one or multiple Landsat scenes within a 
region of interest with the aim of undertaking the Landuse/Landcoverage classification 

streamlining of all required processing steps to perform a libsvm/orfeo toolbox
5
 (OTB) pixel based 

classification. Please refer to the SIBYL deliverables DB1 and DB3 for further technical information 
on the plugin. 

The Plugin is structured into two modules: 

1. Preprocessing 

2. Classification 

 

In the Preprocessing module (see Figure 3) Landsat scenes located in a directory, e.g., the 
directory created by extracting from the downloaded zip archive of a Landsat 8 scene, as can be 

found on EarthExplorer
6
, are 1) cropped to the region of interest provided as, e.g., a polygon 

feature in a vector file and then 2) the separate spectral Bands are stacked and 3) a virtual raster 
tile is created out of these, i.e., in case the region of interest stretches over more than one Landsat 
scene, these are virtually mosaicked. 

 

5
 https://www.orfeo-toolbox.org/ 

6
 http://earthexplorer.usgs.gov/ 
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Figure 3 Preprocessing dialog in the SATEX plugin for QGIS. 

 

If present, the panchromatic band 8 (available from Landsat 7 and 8 images) is excluded from the 
layers. The Classification module (see Figure 4) performs a classification of a raster file, e.g., the 
one resulting from the Preprocessing algorithm, by either using a provided trained Support Vector 
Model (SVM) from OTB or training and testing a SVM on the fly using a provided ground truth 
testing/training data set. In the case the on-the-fly training/testing is performed, the provided 
ground truth data is randomly split into a testing (~20%) and a training part (~80%), the latter is 
then used in the libsvm implementation of OTB to create a SVM. This SVM (or the external SVM) 
are then used to classify the image. The resulting raster file with class labels is then tested with the 
testing dataset (all features of the provided vector layer in case an external SVM model was 
provided) and a confusion matrix is produced. Finally the resulting raster file is sieved (i.e., regions 
consisting of view pixels are merged to the surrounding). An example of the final stratification 
obtained is shown in Figure 5. 
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Figure 4 Classification dialog in the SATEX plugin for QGIS. 

 

REM optimized routing tool 

 

The stratification obtained in the preceding section can now be used to generate an adequate 
sampling distribution on the ground. A set of points is therefore generated, in order to sample the 
geo-cells of the considered area according to their classification and proportional to their surface 
coverage. The resulting set of points is shown in Figure 6. 

The obtained sampling points can be used as input to the routing engine, together with a 
topologically corrected street network of the area of interest. 

In order to optimize the routing, a number of sample points are randomly selected from the 
sampling set defined above, and used to select a related set of road segments, while will compose 
the path of the mobile mapping system. However, it is also important to define in which order to 
visit the selected road segments in order to make the data collection time- and cost-efficient. 
Moreover, in-situ data capturing, especially in urban areas, may be influenced by driving 
restrictions (accessibility, turn-restrictions, one-way streets, etc.) and cost factors (length, time, 
money, etc.). 
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Figure 5  Resulting pixel-based classification of the input Landsat image corresponding to the selected ROI. 
The pixels are colored according to the specific class estimated by the statistical learning machine. Example 
is of the city of Cologne, Germany. 

 

The main steps that are involved in tackling the aforementioned challenges include: 

• Ordering the sample points based on a predefined cost function, especially the start 
and end points of the planned route. 

• Finding the route through all the ordered stops that minimizes the cost function 
while considering the restrictions imposed by the road network. 

As input data for the routing operation, a road network dataset must be provided. Such information 
is often available from qualified institutional sources, although simpler alternatives such as 

OpenStreetMap
7
 (OSM), as for example shown in Figure 7, can also be used. 

The data needs to be topologically corrected and are used to create a routable geometric network 
with defined cost-factors for travelling along street segments. The cost-factor used within a 
standard routing operation is the length of a street segment. Additional cost-factors and 

7
  http://www.openstreetmap.org 
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restrictions, such as street quality, turn restrictions or traffic information, can be added to the 
network if available for an area of interest. 

 

 

Figure 6 Generation of stratified sampling distribution, with proportional allocation, according to the 
considered classes. The example is the city of Cologne, Germany (see Figure 5). 

 

 

Figure 7 Road network obtained from OpenStreetMap (OSM) for the city of Cologne, Germany. 
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The actual routing problem can be reduced to the so-called Travelling Salesman Problem 
(Abraham and Roddick, 1999, TSP), a well-studied combinatorial optimization problem where a 
travelling salesman is required to visit all the stops on his list only once in order to minimize the 
costs. To solve the TSP, a routing engine can be implemented directly on the database (server-

side). The routing engine is based on the pgrouting
8
 extension to PostgreSQL and implements a 

set of custom functions for advanced routing operations. The functions include, amongst others, 
solutions for the TSP under the consideration of custom cost functions and a multiple Dijkstra 
algorithm to determine the best route through a series of stops while minimizing the cost function. 
In a first step, the sampling points are filtered and mapped onto the street network to define route 
stops that should be covered during the field operation. The closest nodes of the street network 
are selected for each sampling point as route stops using a straight line distance from point-to-
point. Only one route stop is selected in case multiple sampling points refer to the same network 
node. This effectively filters the sampling points based on their accessibility. Once identified, the 
route stops are fed into the routing engine and the TSP solver is applied, where the cost-factor to 
be used is defined as an attribute in the street network data. A Dijkstra algorithm (Abraham and 
Roddick, 1999) is than applied multiple times between the sorted stops in order to calculate the 
shortest path across all the stops (see Figure 8). 

The routing engine can be successfully used to optimize the implementation of the planned survey 
(that is, the coverage of the sampling units selected according to the chosen sampling design) 
accounting for different time and cost- constraints which can significantly impact upon the required 
survey resources. For instance, placing a penalty on the repeated scan of the same street would 
force the routing engine to enlarge the geographical scope of the survey, adding potentially 
additional useful observations to the planned ones. Also, highly dynamic parameters, such as, for 
instance, real-time traffic information, might be considered in the routing phase which could also 
be conducted in situ using a mobile platform. This would also allow the mobile mapping system to 
adapt to changed environmental conditions without losing the general focus of the survey. 

The final routing is shown in Figure 9.The routing engine has been implemented in a free, open-
source environment by exploiting the computing capabilities of the postgreSQL/postGIS database 
solution. The tool is provided as SQL/pgsql code, and as QGIS plugin. The latest version can be 
downloaded from the GFZ public github repository: 

https://github.com/GFZ-Centre-for-Early-Warning/REM_optimized_routing 

Further details on the operational application of the plugin can be found in the Appendix B of this 
document and in SIBYL deliverable DB3. 

 

8
 http://pgrouting.org 
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Figure 8 Route stops computed from the sampling set and the available road network. 

 

 

 

 

Figure 9 Final optimized route implementing the desired sampling on the ground. 
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In situ survey deployment 
 

In order to efficiently carry out the survey as planned using the tools described in the preceding 
sections, the following solutions have been provided: 

1. The GFZ-MOMA (MObile MApping) system. This is a lightweight mobile mapping system, 
consisting of a high-resolution omnidirectional camera and related acquisition unit and 
mechanical support, which allows for the rapid acquisition of georeferenced panoramic images 
that can then be analysed off-line. 

2. REM RRVS (Remote Rapid Visual Survey) web platform. This web application allows different 
operators to access the REM database from remote, analyse the collected omnidirectional 
images (captured by the MOMA system) and fill in the visible attributes of selected buildings. 

 

The GFZ-MOMA system 

 

The GFZ-MOMA system, as discussed above, is designed for the rapid and efficient collection of 
in-situ exposure data which could be relevant for different natural and man-made applications 
(Pittore and Wieland, 2012, Wieland et al., 2014, see Figure 10). The system is composed of a 

Ladybug3 omnidirectional camera
9
 from Point Grey Research Ltd., a data capturing and storage 

unit, a navigation unit and an external battery pack that supplies the energy for up to 6 hours of 
autonomous operation. 

 

 

 

Figure 10 The GFZ-MOMA omnidirectional mobile mapping system, with data capturing and storage unit, 
omni-directional camera and battery pack. 

 

9
 https://www.ptgrey.com/ladybug3-360-degree-firewire-spherical-camera-systems 
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The Ladybug3 camera is made up of 6 colour Complementary Metal Oxide Semiconductor 
(CMOS) sensors that capture concurrent image sequences with an acquisition rate of up to 15 fps 
(frames per second). The 6 single-camera image streams are synchronized and automatically 
stitched into an omnidirectional (panoramic) high resolution (5700x2700px) format with JPEG 
compression. The camera system is operated from inside a vehicle and is mounted on its roof by a 
simple system comprising a light-weight aluminium frame and 4 high-power suction cups. 

The data capturing and storage unit has been designed and developed by GFZ with a specific 
focus on ease of use and ruggedness for robust outdoor applications, even under rough conditions 
(e.g., unpaved roads, dust). The main component of the unit is a standard notebook with a 750GB 
Serial ATA hard drive. A commercial-grade GPS receiver provides geo-localization. An optional 
Inertial Measurement Unit (IMU) can be used to record additional data about the camera’s 
orientation. The notebook and all the other components are fixed into a rugged hard plastic case. A 
custom-designed software application captures, synchronizes and saves the different data streams 
coming from the camera, the GPS and the IMU.  The synchronization of the data, within 125 msec, 
is based on the timer embedded in the ieee-1394B hardware controller. Location is associated with 
each omnidirectional image by a b-spline interpolation of GPS positioning. 

The navigation unit uses geographical information systems (GIS) software as the main component 
for location tracking and car navigation. Its map interface is able to combine various background 
maps of the study area and to display pre-calculated sample areas and routes. The position can 
be tracked and displayed in real time with the GPS live tracking functionality. This allows an 
operator to not only navigate the car along pre-calculated routes, but also to reschedule the path 
on-the-fly to cope with unexpected environmental conditions (e.g., traffic jams or road blockages). 
All necessary software for capturing, storing, processing and visualizing the omnidirectional 
images recorded by the GFZ-MOMA system is provided with the system itself. 

The operation of the system is relatively straightforward, and does not require special skills, nor 
particular tools or additional devices. The system can be easily mounted on different vehicles, 
including, for example, cars, vans and vehicles from Civil Protection and fire brigade units. 

 

The REM_RRVS tool 

 

The resulting high-density, high resolution, geo-referenced panoramic images of the urban 
environment can then be analysed by a skilled operator (for example, a local engineer who is 
familiar with the specific engineering practices in the region of interest) in order to infer the 
composition of the building stock and the way it changes according to the geographical location. 
The Rapid Remote Visual Screening is a modern version of the well-known Rapid Visual 

Screening methodology (see ATC-13 and FEMA-154
10

 methodologies) largely used in the 
engineering community. 

The geographic locations where the images have been captured are stored in a database. A 
complete solution for visualization, analysis and entry of the observed data is depicted in Figure 
11. A desktop operator can efficiently conduct virtual observations of the geographical area of 

10
  http://www.fema.gov/media-library/assets/documents/15212 
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interest, and store the captured attributes of the population in an efficient relational database, for 
later estimation and processing. 

The main task of the RRVS tool is to quickly associate to each imaged building, described by its 
geographical coordinates or by its footprint in a GIS model, a set of structural and non-structural 
features included in the particular taxonomy considered. This information can then be used in the 
analysis phase to estimate the structural typology of the building, and its expected vulnerability 
with respect to an earthquake or some other natural hazards. 

In order to accomplish this, a web-based platform (see Figure 11) has been developed within the 
project SIBYL for the remote, rapid screening of the buildings. On the top left, an omnidirectional 
image visualizer allows the user to undertake interactive browsing of the panoramic images. On 
the top right, an interactive map represents the selected buildings footprints and the available 
panoramic images, superimposed on an environmental map. In the bottom panel, a list of the 
buildings composing the specific task is provided, along with the status of the building’s 
description. On the right side, a series of tabs allows the operator to populate the REM database 
with the structural and non-structural features observed on the buildings. Out of the attributes 
listed in the REM taxonomy (see Appendix A) only the ones visible from street-view perspective 
are included in the user interface. 

The system can be accessed by remote through its public access point. The users have to provide 
a user name (previously registered into the system) and a task number. The task number picks up 
a subset of the buildings to be inspected, which are previously selected from the database 
according to the specific sampling schema to be realized. Every task is composed by a variable 
number of buildings to be inspected (e.g. 100 units). The spatial distribution of the buildings 
composing the task can vary according to the sampling approach. 

The use of tasks allows several operators to work in parallel on the same dataset, therefore 
increasing the flexibility of the system and its potential applications. All elements of the interface 
are interactive. For instance, a user can click on an image icon in the map panel in order to load 
the corresponding image in the panoramic visualizer. Clicking on a building´s footprint in the map, 
the corresponding information will be queried in the database and will be used to populate the 
taxonomy tabs for reviewing and modification. 

 

 

Figure 11 Web-based interface of the RRVS (Remote Rapid Visual Screening) Tool. 
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Outlook and conclusions 
 

The ongoing development of the REM platform aims to provide an integrated solution to risk 
practitioners and Civil Protection authorities for the rapid assessment of exposure and vulnerability 
in complex urban environments. The platform is continually evolving following the efforts of the 
SIBYL consortium. Among the possible directions of development for the platform, which will also 
consider feedback from the end-users who are in contact with the project, the following extensions 
are already in progress: 

1. Extending the REM taxonomy to different natural hazards. Currently a taxonomy 
extension to floods is available as an experimental feature. 

2. Extension of the REM taxonomy to post-disaster surveying. This entails the agreement 
of the consortium as to the most suitable damage indicators to be considered. 

3. Implementation of a background process for the estimation of statistical properties of 
the exposure modelling, resulting from the analysis of the screened buildings. 

4. Implementation of an active-learning module which could be used to infer statistical 
properties of the resulting exposure models, and to guide the sampling, collection and 
analysis of further data. 

 

The platform and the implemented tools provide a simple, yet sophisticated solution which can be 
easily adapted to the needs and constraints of civil protection users. A closer interaction between 
end-users and research community is sought in order to advance the currently developed tools 
and methodology into fully operational solutions. 
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Appendix A – REM – Taxonomy 
 

In the following, the attributes implemented in the REM taxonomy, along with the respective values 
are provided. Also listed are the tables related to the hazards the attributes refer to (currently only 
earthquakes). 

The basic taxonomy is based on the taxonomy developed within the GEM (Global Earthquake 
Model) project. The version 2.0 of the GEM taxonomy has been completed in August 2013, and 
superseded the previous version v1.0 (Basic Building Taxonomy) from March 2012. The taxonomy 
was developed by an international team chaired by Charles Scawthorn (USA) and Svetlana Brzev 
(Canada) with significant contributions from Andrew Charleson and Luke Allen (New Zealand), 
Marjorie Greene (USA), Kishor Jaiswal (USA) and Vitor Silva (Portugal). The taxonomy was 
developed in conjunction with other GEM researchers and builds on the knowledge base from the 
EERI and IAEE World Housing Encyclopedia and the USGS PAGER project. The original GEM 
Building Taxonomy is accompanied by an electronic Glossary that contains text and graphic 
illustrations which describe the attributes included in the taxonomy, and can be accessed for 
further information. These electronic resources can be accessed at the following web pages:  

1. Online version of the GEM Building Taxonomy v2.0 in tabular form: 

http://www.nexus.globalquakemodel.org/gem-building-taxonomy/overview 

2. Online glossary (review individual terms and provide comments):  

http://www.nexus.globalquakemodel.org/gem‐building‐taxonomy/overview/glossary  

 

The taxonomy describes characteristics of an individual building or a class of buildings with similar 
characteristics, commonly referred to as a building typology, by means of the following 13 
attributes: i) direction, ii) material of the lateral load‐resisting system, iii) lateral load‐resisting 
system, iv) height, v) date of construction or retrofit, vi) occupancy, vii) building position within a 
block, viii) shape of the building plan, ix) structural irregularity, x) exterior walls, xi) roof, xii) floor, 
and xiii) foundation. Each attribute describes a specific building characteristic that can potentially 
affect seismic performance of an individual building or a building typology.  

The description of a single building structure is therefore defined by a single string, a combination 
of unique IDs for selected attribute values and delimiters (e.g. "/" and "+"). Each attribute has a 
specific position in the string, specified in the database schema. 
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Table 1 Table 'dic_attribute_type' 
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Table 2 Table 'dic_attribute_value' 
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Table 2 (cont.) 
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Table 3 Table 'dic_qualifier_type' 

 

 

 

 

 

 

Table 4  Table 'dic_qulifier_value' 

 

 

Table 5 Table 'taxonomy' 
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Table 6 Table 'dic_hazard' 
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Appendix B - Routing engine 
 

The routing engine is based on the pgrouting
11

 extension to PostgreSQL. The routing engine can 
be accessed either directly using SQL by calling the respective pgsql functions or by using the 
QGIS processing scripts. The QGIS processing scripts provide a simple user interface and easy 
access to the routing functionality, whereas the pgsql functions are meant for users who wish to 
build their own applications or are just more familiar with SQL. In the following, the pgsql functions 
implemented to carry out the optimized routing are described. In the subsequent section the QGIS 
plugin wrapping these functions is also described. 

 

SQL / pgsql functions package 

 

A set of custom functions for advanced routing operations have been implemented on top of the 
standard pgrouting extension. The functions include the following: 

• pgr_dijkstra(varchar, integer, integer): wrapper for a simple Dijkstra function with 
geometry output. 

• pgr_dijkstramulti(varchar, varchar): function to run Dijkstra iteratively on a sequence 
of nodes 

• pgr_makecostmatrix(varchar, varchar, text): function to create a custom cost matrix 
(e.g. for TSP with street length) 

• pgr_createnetwork(varchar): function to create a routable street network 

• pgr_createroutestops(varchar, integer): function to create route stops from a set of 
sample points 

 

Dependencies: PostgreSQL 9.x, PGRouting 2.0, PostGIS 2.0 or higher. 

In the following, a typical workflow for a routing operation is exemplified with a set of simple SQL 
queries that make use of the above mentioned functions. The example assumes that a spatially 
enabled database exists with pgrouting extension activated and the above mentioned functions 
enabled. The database has a schema named “routing” were all the routing related input and output 
tables are stored. Moreover, as input, a street network (here “osm_streets”) and a table that holds 
the sampling points (here “samplepoints_sp001”) needs to be available in the database. 

 

 

 

 

 

11
 http://pgrouting.org 
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------------------------------------------------------------------------------------------------------ 

--1. create a routable streetnetwork 

--(note: streets table should at least contain the columns "gid" and "the_geom". Geometry should 
be cleaned beforehand (e.g. with GRASS v.clean)) 

------------------------------------------------------------------------------------------------------ 

SELECT * FROM pgr_createnetwork('routing.osm_streets'); 

 

This query creates a routable network that can be used with pgrouting from a table that holds 
streets of an area of interest. The streets can be for example imported to PostGIS from 
OpenStreetMap. The structure of the table is open to the user. The only mandatory columns are 
“gid” that holds a unique identifier for each row and “the_geom” that holds the geometry 
information. The geometry should be of type “polyline”. 

The above query adds additional columns to the streets table and populates them. These columns 
are needed by pgrouting and include the following: 

• source, target: Source and target columns that hold the id's of each source and target 
node for a street segment. These columns define the directivity of the network 
segments in case a directed network graph analysis is carried out. 

• length: a default cost attribute that simply holds the length of each street segment in 
meters. Other useful cost attributes that can be defined separately by the user include, 
for example, travel time to pass through a street segment. 

Note that typically when GIS files are loaded into the database for use with pgrouting, they do not 
have topology information associated with them. To create a useful topology, the data needs to be 
“noded”. This means that where two or more roads form an intersection a node should be placed 
and all the road segments need to be broken at the intersection. This assumes that one can 
navigate from any of these segments to any other segment via that intersection. 

The graph analysis functions can be used to help see where there may be topology problems in 
the data. If there is a need to node the data, there is also a function available in pgrouting called 
pgr_nodeNetwork(). This function splits ALL crossing segments and nodes them. There are some 
cases where this might NOT be the right thing to do. For example, when there is an overpass and 
underpass intersection, these should not be noded, but pgr_nodeNetwork() does not know that is 
the case and will node them, which is not good because then the router will believe it is able to 
turn off the overpass onto the underpass like it was a flat 2D intersection. 
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------------------------------------------------------------------------------------------------------ 

--2. create route stops from sample points 

--(note: a random subset of the sample points is used. sample points should have same SRID as 
streetnetwork) 

------------------------------------------------------------------------------------------------------ 

SELECT * FROM pgr_createroutestops('routing.osm_streets_vertices_pgr', 
'routing.samplepoints_sp001', 150); 

 

This query creates a defined number of (unordered) route stops from a set of sampling points. 
First, the sampling points are filtered and mapped on to the street network to define route stops 
that represent nodes of the street network. The closest node of the street network is selected for 
each sampling point as route stop using a straight line distance from point-to-point. Only one route 
stop is selected in case multiple sampling points refer to the same network node. This effectively 
filters the sampling points based on their accessibility. The number of route stops can be defined 
by the user in case a sub-sampling of the sampling points is desired for the routing. In such case, 
a random selection of the sampling points is done before mapping the route stops. 

 

------------------------------------------------------------------------------------------------------ 

--3. order route stops using TSP with custom cost attribute 

--(note: use route stops id minus one to define start and stop point = index of points in cost matrix) 

------------------------------------------------------------------------------------------------------ 

DROP TABLE IF EXISTS routing.route_stops_tsp; 

SELECT seq, a.id+1 as id, b.node as id2, b.the_geom 

 INTO routing.route_stops_tsp FROM pgr_tsp( 

  (SELECT dmatrix from pgr_makecostmatrix('routing.route_stops',   
  'routing.osm_streets', 'length'))::float8[], 0) a 

 LEFT JOIN routing.route_stops b 

 ON (a.id+1 = b.id);  

 

The standard implementation of the TSP solver in pgrouting is based on ordering the points using 
straight line (euclidean) distance between nodes. This is a fast, but not exact solution that 
becomes increasingly inaccurate when the street layout is diverging from a regular dense network 
towards a sparse irregular network. Especially when there are rivers and bridges present, a TSP 
solution based on euclidean distance becomes inaccurate, and a more exact solution that uses the 
street network itself to calculate the cost factor is needed. 

The above query orders a set of points using the TSP solver with a custom cost matrix, where the 
costs are calculated on the street network. The cost is defined in a column of the street table and 
is calculated for each row of the table. The cost is passed on to the function by defining the column 
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name of the cost attribute (here 'length'). The node and end node of the route can then be passed 
on to the function. If only a start node is defined, the end node will be chosen closest to the start 
node in order to force a loop ordering. 

 

------------------------------------------------------------------------------------------------------ 

--4. compute shortest path across all ordered stops 

------------------------------------------------------------------------------------------------------ 

SELECT * FROM pgr_dijkstramulti('routing.routestops_sp001_tsp', 'routing.osm_streets', 'length'); 

 

Once the route stops are ordered by the TSP solver, this query runs a Dijkstra algorithm multiple 
times between any ordered stop and its successor stop to calculate the shortest path across all the 
stops. 

 

QGIS processing scripts 

 

In QGIS, the Processing Toolbox is a geoprocessing environment that can be used to call native 
and third-party algorithms. The tools are subdivided in scripts and models. 

The scripts are used to execute a single algorithm or run a batch process based on that algorithm. 
Each script is an ASCII file containing a header and body, where the header contains a set of 
special instructions to automatically generate the graphical user interface of the script itself. 

The models refer to a graphical processing environment recently introduced in QGIS. This 
framework allows for combining different algorithms, possibly developed in different environments 
(R, GRASS, SAGA, OTB, etc.) in a single processing pipeline which is defined by visual blocks. 
Contrary to the scripts, the models are saved in a binary format and cannot be directly edited. 

The routing engine and all the functions mentioned above have been transferred into scripts that 
can be loaded to the QGIS processing toolbar. The body of the script in this case is composed of 
R code that calls the according pgsql functions that have been described in the previous section. 
The R scripts in this case act as simple wrappers for the pgsql functions. The following scripts are 
available: 

• GenerateRouteNetwork (see Figure 12). 

• GenerateRouteStops. 

• OrderRouteStops. 

• RouteDijkstra. 

Input parameters for the different scripts are the same as described above for the pgsql functions 
and can be entered via the user-interface along with the appropriate database connection. 
Documentation of the scripts and their parameters is given directly within the user interface in the 
form of a help menu. 
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Figure 12 Example dialogue of the GenerateRouteNetwork scripts, that can be accessed via the QGIS 
processing toolbar (right). 

 

Installation 

 

The scripts and models can be downloaded from the github repository under 

https://github.com/GFZ-Centre-for-Early-Warning/REM_optimized_routing 

 

Linux: copy all the files from the folder “rscripts” to the folder “~/.qgis2/processing/rscripts”. The 
files with extension “.help” contain a short documentation about the individual scripts. 

 

Windows: same procedure, with the related paths (always in the user´s Documents folder). 

 

The processing scripts are available in QGIS under the Processing->Toolbox menu item, which 
provides a simple graphical interface. When starting QGIS, all available scripts and models are 
automatically loaded. 

In order to run the scripts, a spatially enabled database with pgrouting enabled has to be present 
in the system. Please note that R scripts have to be explicitly activated in the Processing Toolbox 
Settings of QGIS. 
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