

SIBYL

(SeIsmic monitoring and vulneraBilitY framework for civiL

protection)

Agreement number: ECHO/SUB/2014/695550

Deliverable DB2: Software platform including processing tools

with related manual

 Version 1.0 February 2016

Project start date: 01.01.2015 End date: 31.12.2016

Coordinator: Prof. Dr. Stefano Parolai

 Centre for Early Warning Systems

Helmholtz Centre Potsdam GFZ German Research

Centre for Geosciences, Potsdam, Germany

1

Contents

Contents ... 2

Introduction ... 3

The REM Platform .. 4

Main components .. 4

REM Database .. 4

Assets taxonomy ... 6

Information life-cycle support ... 7

Main operational tools ... 10

Survey planning .. 10

REM_SATEX tool .. 10

REM optimized routing tool .. 12

In situ survey deployment ... 17

The GFZ-MOMA system ... 17

The REM_RRVS tool .. 18

Outlook and conclusions ... 20

Suggested reading.. 21

Appendix A – REM – Taxonomy .. 23

SQL / pgsql functions package .. 29

QGIS processing scripts .. 32

Installation ... 33

2

Introduction

A set of tools for the processing and analyses of remote sensing imagery and optimising the in situ
data collection activities have been expanded upon and developed within the SIBYL project.

A virtual platform, composed by different modules tightly interconnected, is currently being
developed by GFZ and in this document a brief overview of the available tools composing the
platform is provided.

The platform, named REM (Rapid Environmental Mapping) aims at providing a modular and
efficient solution for Civil Protection (CP) agencies and other risk practitioners concerned with
natural hazards. The development of the REM platform stems from the observation that in real-
world risk-assessment applications, a critical role is played by the exposure and vulnerability
model. A poor (incomplete, sparse, uncertain) knowledge of the geographical area exposed to
natural hazards such as earthquakes or floods will certainly result in uncertain estimates of the
potential consequences.

The development of exposure models traditionally entails the collection of a significant amount of
data in the field, with engineering procedures that have been developed for single (usually critical)
structures. Since these procedures do not scale well with the geographical extent of a risk-
assessment application, the resulting burden (both economical and in terms of resources) might
hinder the whole process.

It is therefore of paramount importance to ensure the provision of methodologies, technologies and
tools able to streamline the exposure modelling process while ensuring a satisfactory level of
accuracy and timeliness.

In the first section of this document the main structure of the REM platform will be described and
discussed. Since a critical component of the platform is the database, a section is devoted to
describing and discussing its structure and features. The components developed or upgraded
within the SIBYL projects will then be presented in the subsequent sections. In the last section an
outlook of the research and development currently in progress to further advance the REM
platform is provided and discussed. A reading list is also provided for the interested reader.

3

The REM Platform

In the following, the main structure of the REM platform is introduced, and the current components
are described. The platform is continuously evolving while new functionalities are added.

Main components

The main components of REM platform are depicted in Figure 1. The core of the system is
represented by the database, which hosts the assets data (geometry, attributes and qualifiers) and
the collected images.

Figure 1 The main components of the REM (Rapid Environmental Monitoring) platform.

REM Database

The database model has been designed to serve the needs for efficient storage and management
of data represented at different spatial scales and changing over time. It forms the basis for the
implementation of a multi-resolution sampling framework.

4

The implementation is based on the free and open-source, unix-based and object-relational

database management system PostgreSQL
1
. It supports most Structured Query Language (SQL)

constructs, including sub selects, transactions and user-defined types and functions as well as
many standard data types including date / time types. The latest database schema, shown in
Figure 2, can be downloaded directly from the git source:

https://github.com/GFZ-Centre-for-Early-Warning/REM_DBschema

Figure 2 REM database schema. The three table groups refer to the main entities in the database:
taxonomy, assets and images.

For spatial functions, the free and open-source spatial database extension PostGIS
2
 is applied. It

adds support for geographic objects to the PostgreSQL object-relational database. PostGIS
follows the OpenGIS “Simple Features Specification for SQL” and since version 2.0 supports both
vector and raster objects and related spatial query capabilities. Also, topological models are

1
 http://www.postgresql.org/

2
 http://postgis.net/

5

https://github.com/GFZ-Centre-for-Early-Warning/REM_DBschema

supported to handle objects with shared boundaries. To deal with the multi-representation of
spatial objects, a bottom-up approach is followed where datasets of different resolution are linked
by using additional attributes, which identify the corresponding objects in the lower levels of detail.
Two cases of multi-resolution datasets can be distinguished and are supported by the database
prototype. First, datasets at different resolutions are generated independently and need to be
linked in the database by matching procedures. Second, lower resolution representations are
derived from higher resolution data by generalization functions and their link is established by the
generalization process.

The database model has been designed to be able to integrate and manage various kinds of
indicators that follow possibly different standard taxonomies which are, moreover, likely to depend
on the type of hazard and/or on the considered phase of the disaster management cycle (pre-
disaster vulnerability, post-disaster recovery and reconstruction). In its current implementation, the
model could be validated against the GEM Building Taxonomy. However, minor adjustments were
needed to the prototype model in order to fit the final list of indicators to be agreed upon in the next
phase of the project.

The database model is structured into three schemas. The asset schema contains the main
description of the database objects, their spatial reference and representations at different
resolutions. Besides the spatial properties, the assets are characterized by attributes and qualifier
values which are defined within the taxonomy schema.

Assets taxonomy

The database model is intended to integrate and manage various kinds of structural and non-
structural features of the exposed assets which are relevant for describing and monitoring
exposure and vulnerability to earthquakes (and other natural hazards). The specific indicators
should follow standard existing taxonomies, which are likely to depend on the type of hazard
and/or on the considered phase of the disaster management cycle (pre-disaster vulnerability, post-
disaster recovery and reconstruction).

The project SIBYL focuses on building structures that are mostly used for residential purposes. As
a basis, the earthquake-focused taxonomy originally developed with the GEM (Global Earthquake

Model
3
) has been proposed.

The GEM Taxonomy has been designed to describe hundreds of building typologies with a global
scope, so it is well positioned to be further extended to other hazards, and can be organized as a
series of expandable tables, which contain various attributes referring to specific building
characteristics. The specific states of the attributes are given by the values which are represented
by unique IDs in alphanumeric format associated with the corresponding text descriptions. The
taxonomy allows one to describe buildings at different levels of detail, where the number of
attributes or the depth of information to be captured depends on the aim of the study, available
data sources, and the type of data collection approach. More details and a full list of attributes and
associated values included in the GEM Building Taxonomy can be found in Brzev et al. (2012).

3
 http://www.globalquakemodel.org/

6

Taxonomy attributes are organized in a dictionary table (taxonomy.dic_attribute_type) within the
relational database. Each attribute type is assigned a unique ID in alphanumeric format and is
linked to a textual description. Optional columns to specify the attribute level (in case of multi-level
taxonomies such as the GEM Taxonomy) and attribute order (in case a specific output string
needs to be generated from a set of attributes for non-database applications, this column provides
an indication about the order in which the attributes need to be assembled) are provided.
Categorical attribute values (taxonomy.dic_attribute_value) are stored in a separate dictionary
table and are also defined by unique IDs and linked with a textual description. Numeric or textual
attribute values are inserted for the single object primitives directly in the table object.main_detail.
Each attribute type needs to be associated with one or more hazard types (taxonomy.hazard) and
be linked to a specific taxonomy (taxonomy.dic_taxonomy) in order to clearly categorize the
attributes and to identify their source and application.

In addition to attribute types and values, object qualifiers are also defined within the taxonomy
schema of the database prototype. Qualifiers in the context of this work refer to additional
descriptors of object primitives that are independent of the type of hazard and the application.
They are more closely linked to uncertainty treatment and knowledge life-cycle management.
Potential qualifiers to be supported could include accuracy, precision, quality or valid time.
Qualifier types (taxonomy.dic_qualifier_type) are defined by unique IDs and linked with a textual
description. The specific states of the qualifier types are given by values which are stored in a
separate dictionary table (taxonomy.dic_qualifier_value) in case of categorical variables. Numeric
or textual qualifier values are inserted for the single object primitives directly in the table
object.main_detail_qualifier.

The current attributes and the respective values are listed in Appendix A.

Information life-cycle support

In order to allow for a detailed description of the temporal variability within objects, a bi-temporal
representation of time with transaction time and valid time has been implemented at the primitive
spatial object level. Valid time is considered as an object qualifier and is therefore specified for
each record by qualifier timestamps. Valid time refers to real-world timestamps and therefore,
unlike the transaction time, it needs to be set for each record (i.e., each entry in the database) by
the user or the application that inserts or updates the records as a consequence of a real world
change. Therefore, even continuous real world changes are detected in discrete steps in the
database. This is, however, in line with the envisaged remote sensing application for which the
database is intended to, because remote sensing analysis itself is dependent on the (stepwise)
acquisition time of satellite images over an area of interest. Moreover, the satellites have specific
revisit periods or temporal resolutions which depend on their orbit, sensor specifications and
number of satellites (in case of a satellite constellation) and which practically define the maximum
level of temporal granularity. In order to define the lifespan of real world objects, two valid
timestamps are set in the object.main_detail_qualifier table: “valid from” (qualifier_timestamp_1)
and “valid to” (qualifier_timestamp_2). “Valid from” is defined after insert of a record and “valid to”
is defined before delete of a record.

7

To be able to keep track of the history of the real world objects, a live-history approach is followed.
This means that deleted or changed records are archived in the history schema along with
additional information about the corresponding database transaction. A generic trigger function
history.if_modified_func() was defined which archives the records and logs transaction time and
optional additional information about changes to selected tables and attributes. The function is

based onPostgreSQL audit trigger
4
 and was modified according to the requirements of this project.

The logging of transactions can be done at a statement level or a row level. Control is for each
logged table separately and columns to be logged can be specified individually. Row values are
recorded as hstore fields instead of text, which allows for more sophisticated queries on the history
and reduces query complexity and storage space. The logged information includes the following:

• Schema name, table name, table OID, transaction ID: identifiers for the changed table and
transaction.

• Transaction user: session user name.

• Transaction time: current timestamp to log the start time of the transaction.

• Transaction query: optional the query text can be logged.

• Transaction type: INSERT, UPDATE, DELETE, TRUNCATE.

• Old record: row value before the change or after in case of INSERT.

• New record: new values of the changed columns in case of UPDATE.

• Changed fields: field affected by the change.

The combination of a bi-temporal data model with a live-history approach allows for the straight
forward recovery of former states of the database at defined transaction or valid times and for
sophisticated temporal queries. A set of functions have been implemented to exemplify the
querying of transaction and valid time, temporal properties and temporal relationships. Preliminary
temporal query functions include the following.

• ttime_inside(ttime_from, ttime_to): This function selects from history.logged_actions the
records that have been modified in the logged tables at some timestamp inside the defined
transaction time range. For each record the latest version within the defined transaction time
range is selected.

• ttime_equal(ttime): This function selects from history.logged_actions the records that have
been modified in the logged tables at a timestamp that equals the defined transaction time.

• ttime_gethistory(): This function selects from history.logged_actions all records that have been
modified in the logged tables. It provides with the transaction time history.

• vtime_inside(vtime_from, vtime_to): This function selects from history.logged_actions the
records that have been subject to a real world change at some timestamp inside the defined
valid time range. For each record the latest version within the defined valid time range is
selected.

4
 http://wiki.postgresql.org/wiki/Audit_trigger_91plus

8

• vtime_intersect(vtime_from, vtime_to): This function selects from history.logged_actions the
records that have been subject to a real world change at some timestamp that intersects with
the defined valid time range. For each record the latest version within the defined valid time
range is selected.

• vtime_equal(ttime_from, ttime_to): This function selects from history.logged_actions the
records that have a valid time range that equals the defined valid time range.

• vtime_gethistory(): This function selects from history.logged_actions all records that have been
subject to a real world change. For each record the latest version at each valid time is
selected. It provides with the valid time history.

9

Main operational tools

Survey planning

During the survey planning phase the following processing tools can be used:

1. REM SATEX tool. Provided as a QGIS plugin, this tool allows the user to obtain a preliminary
Land Use/Land Cover (LULC) stratification of a wide geographic area by supervised
classification of LANDSAT imagery;

2. REM routing tool. This tool allows to the user generate optimized routes based on a set of
sampling points, possibly generated according to the stratification produced by the SATEX tool.

REM_SATEX tool

This plugin provides two algorithms for the processing of one or multiple Landsat scenes within a
region of interest with the aim of undertaking the Landuse/Landcoverage classification

streamlining of all required processing steps to perform a libsvm/orfeo toolbox
5
 (OTB) pixel based

classification. Please refer to the SIBYL deliverables DB1 and DB3 for further technical information
on the plugin.

The Plugin is structured into two modules:

1. Preprocessing

2. Classification

In the Preprocessing module (see Figure 3) Landsat scenes located in a directory, e.g., the
directory created by extracting from the downloaded zip archive of a Landsat 8 scene, as can be

found on EarthExplorer
6
, are 1) cropped to the region of interest provided as, e.g., a polygon

feature in a vector file and then 2) the separate spectral Bands are stacked and 3) a virtual raster
tile is created out of these, i.e., in case the region of interest stretches over more than one Landsat
scene, these are virtually mosaicked.

5
 https://www.orfeo-toolbox.org/

6
 http://earthexplorer.usgs.gov/

10

Figure 3 Preprocessing dialog in the SATEX plugin for QGIS.

If present, the panchromatic band 8 (available from Landsat 7 and 8 images) is excluded from the
layers. The Classification module (see Figure 4) performs a classification of a raster file, e.g., the
one resulting from the Preprocessing algorithm, by either using a provided trained Support Vector
Model (SVM) from OTB or training and testing a SVM on the fly using a provided ground truth
testing/training data set. In the case the on-the-fly training/testing is performed, the provided
ground truth data is randomly split into a testing (~20%) and a training part (~80%), the latter is
then used in the libsvm implementation of OTB to create a SVM. This SVM (or the external SVM)
are then used to classify the image. The resulting raster file with class labels is then tested with the
testing dataset (all features of the provided vector layer in case an external SVM model was
provided) and a confusion matrix is produced. Finally the resulting raster file is sieved (i.e., regions
consisting of view pixels are merged to the surrounding). An example of the final stratification
obtained is shown in Figure 5.

11

Figure 4 Classification dialog in the SATEX plugin for QGIS.

REM optimized routing tool

The stratification obtained in the preceding section can now be used to generate an adequate
sampling distribution on the ground. A set of points is therefore generated, in order to sample the
geo-cells of the considered area according to their classification and proportional to their surface
coverage. The resulting set of points is shown in Figure 6.

The obtained sampling points can be used as input to the routing engine, together with a
topologically corrected street network of the area of interest.

In order to optimize the routing, a number of sample points are randomly selected from the
sampling set defined above, and used to select a related set of road segments, while will compose
the path of the mobile mapping system. However, it is also important to define in which order to
visit the selected road segments in order to make the data collection time- and cost-efficient.
Moreover, in-situ data capturing, especially in urban areas, may be influenced by driving
restrictions (accessibility, turn-restrictions, one-way streets, etc.) and cost factors (length, time,
money, etc.).

12

Figure 5 Resulting pixel-based classification of the input Landsat image corresponding to the selected ROI.
The pixels are colored according to the specific class estimated by the statistical learning machine. Example
is of the city of Cologne, Germany.

The main steps that are involved in tackling the aforementioned challenges include:

• Ordering the sample points based on a predefined cost function, especially the start
and end points of the planned route.

• Finding the route through all the ordered stops that minimizes the cost function
while considering the restrictions imposed by the road network.

As input data for the routing operation, a road network dataset must be provided. Such information
is often available from qualified institutional sources, although simpler alternatives such as

OpenStreetMap
7
 (OSM), as for example shown in Figure 7, can also be used.

The data needs to be topologically corrected and are used to create a routable geometric network
with defined cost-factors for travelling along street segments. The cost-factor used within a
standard routing operation is the length of a street segment. Additional cost-factors and

7
 http://www.openstreetmap.org

13

restrictions, such as street quality, turn restrictions or traffic information, can be added to the
network if available for an area of interest.

Figure 6 Generation of stratified sampling distribution, with proportional allocation, according to the
considered classes. The example is the city of Cologne, Germany (see Figure 5).

Figure 7 Road network obtained from OpenStreetMap (OSM) for the city of Cologne, Germany.

14

The actual routing problem can be reduced to the so-called Travelling Salesman Problem
(Abraham and Roddick, 1999, TSP), a well-studied combinatorial optimization problem where a
travelling salesman is required to visit all the stops on his list only once in order to minimize the
costs. To solve the TSP, a routing engine can be implemented directly on the database (server-

side). The routing engine is based on the pgrouting
8
 extension to PostgreSQL and implements a

set of custom functions for advanced routing operations. The functions include, amongst others,
solutions for the TSP under the consideration of custom cost functions and a multiple Dijkstra
algorithm to determine the best route through a series of stops while minimizing the cost function.
In a first step, the sampling points are filtered and mapped onto the street network to define route
stops that should be covered during the field operation. The closest nodes of the street network
are selected for each sampling point as route stops using a straight line distance from point-to-
point. Only one route stop is selected in case multiple sampling points refer to the same network
node. This effectively filters the sampling points based on their accessibility. Once identified, the
route stops are fed into the routing engine and the TSP solver is applied, where the cost-factor to
be used is defined as an attribute in the street network data. A Dijkstra algorithm (Abraham and
Roddick, 1999) is than applied multiple times between the sorted stops in order to calculate the
shortest path across all the stops (see Figure 8).

The routing engine can be successfully used to optimize the implementation of the planned survey
(that is, the coverage of the sampling units selected according to the chosen sampling design)
accounting for different time and cost- constraints which can significantly impact upon the required
survey resources. For instance, placing a penalty on the repeated scan of the same street would
force the routing engine to enlarge the geographical scope of the survey, adding potentially
additional useful observations to the planned ones. Also, highly dynamic parameters, such as, for
instance, real-time traffic information, might be considered in the routing phase which could also
be conducted in situ using a mobile platform. This would also allow the mobile mapping system to
adapt to changed environmental conditions without losing the general focus of the survey.

The final routing is shown in Figure 9.The routing engine has been implemented in a free, open-
source environment by exploiting the computing capabilities of the postgreSQL/postGIS database
solution. The tool is provided as SQL/pgsql code, and as QGIS plugin. The latest version can be
downloaded from the GFZ public github repository:

https://github.com/GFZ-Centre-for-Early-Warning/REM_optimized_routing

Further details on the operational application of the plugin can be found in the Appendix B of this
document and in SIBYL deliverable DB3.

8
 http://pgrouting.org

15

https://github.com/GFZ-Centre-for-Early-Warning/REM_optimized_routing

Figure 8 Route stops computed from the sampling set and the available road network.

Figure 9 Final optimized route implementing the desired sampling on the ground.

16

In situ survey deployment

In order to efficiently carry out the survey as planned using the tools described in the preceding
sections, the following solutions have been provided:

1. The GFZ-MOMA (MObile MApping) system. This is a lightweight mobile mapping system,
consisting of a high-resolution omnidirectional camera and related acquisition unit and
mechanical support, which allows for the rapid acquisition of georeferenced panoramic images
that can then be analysed off-line.

2. REM RRVS (Remote Rapid Visual Survey) web platform. This web application allows different
operators to access the REM database from remote, analyse the collected omnidirectional
images (captured by the MOMA system) and fill in the visible attributes of selected buildings.

The GFZ-MOMA system

The GFZ-MOMA system, as discussed above, is designed for the rapid and efficient collection of
in-situ exposure data which could be relevant for different natural and man-made applications
(Pittore and Wieland, 2012, Wieland et al., 2014, see Figure 10). The system is composed of a

Ladybug3 omnidirectional camera
9
 from Point Grey Research Ltd., a data capturing and storage

unit, a navigation unit and an external battery pack that supplies the energy for up to 6 hours of
autonomous operation.

Figure 10 The GFZ-MOMA omnidirectional mobile mapping system, with data capturing and storage unit,
omni-directional camera and battery pack.

9
 https://www.ptgrey.com/ladybug3-360-degree-firewire-spherical-camera-systems

17

The Ladybug3 camera is made up of 6 colour Complementary Metal Oxide Semiconductor
(CMOS) sensors that capture concurrent image sequences with an acquisition rate of up to 15 fps
(frames per second). The 6 single-camera image streams are synchronized and automatically
stitched into an omnidirectional (panoramic) high resolution (5700x2700px) format with JPEG
compression. The camera system is operated from inside a vehicle and is mounted on its roof by a
simple system comprising a light-weight aluminium frame and 4 high-power suction cups.

The data capturing and storage unit has been designed and developed by GFZ with a specific
focus on ease of use and ruggedness for robust outdoor applications, even under rough conditions
(e.g., unpaved roads, dust). The main component of the unit is a standard notebook with a 750GB
Serial ATA hard drive. A commercial-grade GPS receiver provides geo-localization. An optional
Inertial Measurement Unit (IMU) can be used to record additional data about the camera’s
orientation. The notebook and all the other components are fixed into a rugged hard plastic case. A
custom-designed software application captures, synchronizes and saves the different data streams
coming from the camera, the GPS and the IMU. The synchronization of the data, within 125 msec,
is based on the timer embedded in the ieee-1394B hardware controller. Location is associated with
each omnidirectional image by a b-spline interpolation of GPS positioning.

The navigation unit uses geographical information systems (GIS) software as the main component
for location tracking and car navigation. Its map interface is able to combine various background
maps of the study area and to display pre-calculated sample areas and routes. The position can
be tracked and displayed in real time with the GPS live tracking functionality. This allows an
operator to not only navigate the car along pre-calculated routes, but also to reschedule the path
on-the-fly to cope with unexpected environmental conditions (e.g., traffic jams or road blockages).
All necessary software for capturing, storing, processing and visualizing the omnidirectional
images recorded by the GFZ-MOMA system is provided with the system itself.

The operation of the system is relatively straightforward, and does not require special skills, nor
particular tools or additional devices. The system can be easily mounted on different vehicles,
including, for example, cars, vans and vehicles from Civil Protection and fire brigade units.

The REM_RRVS tool

The resulting high-density, high resolution, geo-referenced panoramic images of the urban
environment can then be analysed by a skilled operator (for example, a local engineer who is
familiar with the specific engineering practices in the region of interest) in order to infer the
composition of the building stock and the way it changes according to the geographical location.
The Rapid Remote Visual Screening is a modern version of the well-known Rapid Visual

Screening methodology (see ATC-13 and FEMA-154
10

 methodologies) largely used in the
engineering community.

The geographic locations where the images have been captured are stored in a database. A
complete solution for visualization, analysis and entry of the observed data is depicted in Figure
11. A desktop operator can efficiently conduct virtual observations of the geographical area of

10
 http://www.fema.gov/media-library/assets/documents/15212

18

interest, and store the captured attributes of the population in an efficient relational database, for
later estimation and processing.

The main task of the RRVS tool is to quickly associate to each imaged building, described by its
geographical coordinates or by its footprint in a GIS model, a set of structural and non-structural
features included in the particular taxonomy considered. This information can then be used in the
analysis phase to estimate the structural typology of the building, and its expected vulnerability
with respect to an earthquake or some other natural hazards.

In order to accomplish this, a web-based platform (see Figure 11) has been developed within the
project SIBYL for the remote, rapid screening of the buildings. On the top left, an omnidirectional
image visualizer allows the user to undertake interactive browsing of the panoramic images. On
the top right, an interactive map represents the selected buildings footprints and the available
panoramic images, superimposed on an environmental map. In the bottom panel, a list of the
buildings composing the specific task is provided, along with the status of the building’s
description. On the right side, a series of tabs allows the operator to populate the REM database
with the structural and non-structural features observed on the buildings. Out of the attributes
listed in the REM taxonomy (see Appendix A) only the ones visible from street-view perspective
are included in the user interface.

The system can be accessed by remote through its public access point. The users have to provide
a user name (previously registered into the system) and a task number. The task number picks up
a subset of the buildings to be inspected, which are previously selected from the database
according to the specific sampling schema to be realized. Every task is composed by a variable
number of buildings to be inspected (e.g. 100 units). The spatial distribution of the buildings
composing the task can vary according to the sampling approach.

The use of tasks allows several operators to work in parallel on the same dataset, therefore
increasing the flexibility of the system and its potential applications. All elements of the interface
are interactive. For instance, a user can click on an image icon in the map panel in order to load
the corresponding image in the panoramic visualizer. Clicking on a building´s footprint in the map,
the corresponding information will be queried in the database and will be used to populate the
taxonomy tabs for reviewing and modification.

Figure 11 Web-based interface of the RRVS (Remote Rapid Visual Screening) Tool.

19

Outlook and conclusions

The ongoing development of the REM platform aims to provide an integrated solution to risk
practitioners and Civil Protection authorities for the rapid assessment of exposure and vulnerability
in complex urban environments. The platform is continually evolving following the efforts of the
SIBYL consortium. Among the possible directions of development for the platform, which will also
consider feedback from the end-users who are in contact with the project, the following extensions
are already in progress:

1. Extending the REM taxonomy to different natural hazards. Currently a taxonomy
extension to floods is available as an experimental feature.

2. Extension of the REM taxonomy to post-disaster surveying. This entails the agreement
of the consortium as to the most suitable damage indicators to be considered.

3. Implementation of a background process for the estimation of statistical properties of
the exposure modelling, resulting from the analysis of the screened buildings.

4. Implementation of an active-learning module which could be used to infer statistical
properties of the resulting exposure models, and to guide the sampling, collection and
analysis of further data.

The platform and the implemented tools provide a simple, yet sophisticated solution which can be
easily adapted to the needs and constraints of civil protection users. A closer interaction between
end-users and research community is sought in order to advance the currently developed tools
and methodology into fully operational solutions.

20

Suggested reading

Abraham, T. and Roddick, F.J. (1999) Survey of Spatio-Temporal Databases, GeoInformatica, 3(1),
61–99.

Allen, J.F. (1981) An Interval-Based Representation of Temporal Knowledge, in Proceedings of the
International Joint Conference on Artifical Intelligence 1981, 221–226.

Brzev, S., Scawthorn, C., Charleson, A. and Jaiswal, K. (2012) Interim Overview of GEM Building
Taxonomy V2.0.

Koubarakis, M. (2003) Spatio-Temporal Databases: The CHOROCHRONOS Approach. Springer.

Langran, G. (1992) Time in Geographic Information Systems. Taylor & Francis.

Paredaens, J., Van den Bussche, J. and D. Van Gucht, D. (1994) Towards a theory of spatial
database queries (extended abstract), in Proceedings of the thirteenth ACM SIGACT-SIGMOD-
SIGART symposium on Principles of database systems, New York, NY, USA, 1994, pp. 279–288.

Pelekis, N., Theodoulidis, B., Kopanakis, I. and Theodoridis, Y. (2004) Literature review of spatio-
temporal database models, Knowl. Eng. Rev., 19(3), 235–274.

Peuquet, D.J. (2001) Making Space for Time: Issues in Space-Time Data Representation,
GeoInformatica, 5(1), 11–32.

Schneider, A. (2012) Monitoring land cover change in urban and peri-urban areas using dense
time stacks of Landsat satellite data and a data mining approach, Remote Sensing of
Environment, 124, 689–704.

Sellis, T.K. (1999) Research Issues in Spatio-temporal Database Systems, in Proceedings of the
6th International Symposium on Advances in Spatial Databases, London, UK, UK, 1999, pp. 5–11.

Sester, M., Sarjakoski, T., Harrie, L., Hampe, M., Koivula, T. Sarjakoski, T., Lehto, L., Birgit, E.,
Nivala, E.-M. and Stigmar, H. (2004) Real-time generalisation and multiple representation in the
GiMoDig mobile service, IST-2000-30090, 2004.

Snodgrass, R.T. (1992) Temporal databases, in Theories and Methods of Spatio-Temporal
Reasoning in Geographic Space, A. U. Frank, I. Campari, and U. Formentini, Eds. Springer Berlin
Heidelberg, 1992, pp. 22–64.

Stoter, J.E., Morales, J.M., Lemmens, R.L.G., Meijers, B.M., van Oosterom, P.J.M., Quak, C.W.,
Uitermark, H.T. and L. van den Brink, l. (2008) A Data Model for Multi-scale Topographical Data, in
Headway in Spatial Data Handling, Ruas, A. and Gold, C. eds. Springer Berlin Heidelberg, 233–
254.

Taubenböck, H., Esch, T., Wurm, M., Roth, A. and Dech, S. (2010) Object-based feature extraction
using high spatial resolution satellite data of urban areas, Journal of Spatial Science, 55(1), 117–
132.

21

Wieland, M., Pittore, M., Parolai, S. and Zschau, J. (2012) Exposure Estimation from Multi-
Resolution Optical Satellite Imagery for Seismic Risk Assessment, ISPRS International Journal of
Geo-Information, 1(3), 69–88.

22

Appendix A – REM – Taxonomy

In the following, the attributes implemented in the REM taxonomy, along with the respective values
are provided. Also listed are the tables related to the hazards the attributes refer to (currently only
earthquakes).

The basic taxonomy is based on the taxonomy developed within the GEM (Global Earthquake
Model) project. The version 2.0 of the GEM taxonomy has been completed in August 2013, and
superseded the previous version v1.0 (Basic Building Taxonomy) from March 2012. The taxonomy
was developed by an international team chaired by Charles Scawthorn (USA) and Svetlana Brzev
(Canada) with significant contributions from Andrew Charleson and Luke Allen (New Zealand),
Marjorie Greene (USA), Kishor Jaiswal (USA) and Vitor Silva (Portugal). The taxonomy was
developed in conjunction with other GEM researchers and builds on the knowledge base from the
EERI and IAEE World Housing Encyclopedia and the USGS PAGER project. The original GEM
Building Taxonomy is accompanied by an electronic Glossary that contains text and graphic
illustrations which describe the attributes included in the taxonomy, and can be accessed for
further information. These electronic resources can be accessed at the following web pages:

1. Online version of the GEM Building Taxonomy v2.0 in tabular form:

http://www.nexus.globalquakemodel.org/gem-building-taxonomy/overview

2. Online glossary (review individual terms and provide comments):

http://www.nexus.globalquakemodel.org/gem‐building‐taxonomy/overview/glossary

The taxonomy describes characteristics of an individual building or a class of buildings with similar
characteristics, commonly referred to as a building typology, by means of the following 13
attributes: i) direction, ii) material of the lateral load‐resisting system, iii) lateral load‐resisting
system, iv) height, v) date of construction or retrofit, vi) occupancy, vii) building position within a
block, viii) shape of the building plan, ix) structural irregularity, x) exterior walls, xi) roof, xii) floor,
and xiii) foundation. Each attribute describes a specific building characteristic that can potentially
affect seismic performance of an individual building or a building typology.

The description of a single building structure is therefore defined by a single string, a combination
of unique IDs for selected attribute values and delimiters (e.g. "/" and "+"). Each attribute has a
specific position in the string, specified in the database schema.

23

Table 1 Table 'dic_attribute_type'

24

Table 2 Table 'dic_attribute_value'

25

Table 2 (cont.)

26

Table 3 Table 'dic_qualifier_type'

Table 4 Table 'dic_qulifier_value'

Table 5 Table 'taxonomy'

27

Table 6 Table 'dic_hazard'

28

Appendix B - Routing engine

The routing engine is based on the pgrouting
11

 extension to PostgreSQL. The routing engine can
be accessed either directly using SQL by calling the respective pgsql functions or by using the
QGIS processing scripts. The QGIS processing scripts provide a simple user interface and easy
access to the routing functionality, whereas the pgsql functions are meant for users who wish to
build their own applications or are just more familiar with SQL. In the following, the pgsql functions
implemented to carry out the optimized routing are described. In the subsequent section the QGIS
plugin wrapping these functions is also described.

SQL / pgsql functions package

A set of custom functions for advanced routing operations have been implemented on top of the
standard pgrouting extension. The functions include the following:

• pgr_dijkstra(varchar, integer, integer): wrapper for a simple Dijkstra function with
geometry output.

• pgr_dijkstramulti(varchar, varchar): function to run Dijkstra iteratively on a sequence
of nodes

• pgr_makecostmatrix(varchar, varchar, text): function to create a custom cost matrix
(e.g. for TSP with street length)

• pgr_createnetwork(varchar): function to create a routable street network

• pgr_createroutestops(varchar, integer): function to create route stops from a set of
sample points

Dependencies: PostgreSQL 9.x, PGRouting 2.0, PostGIS 2.0 or higher.

In the following, a typical workflow for a routing operation is exemplified with a set of simple SQL
queries that make use of the above mentioned functions. The example assumes that a spatially
enabled database exists with pgrouting extension activated and the above mentioned functions
enabled. The database has a schema named “routing” were all the routing related input and output
tables are stored. Moreover, as input, a street network (here “osm_streets”) and a table that holds
the sampling points (here “samplepoints_sp001”) needs to be available in the database.

11
 http://pgrouting.org

29

--

--1. create a routable streetnetwork

--(note: streets table should at least contain the columns "gid" and "the_geom". Geometry should
be cleaned beforehand (e.g. with GRASS v.clean))

--

SELECT * FROM pgr_createnetwork('routing.osm_streets');

This query creates a routable network that can be used with pgrouting from a table that holds
streets of an area of interest. The streets can be for example imported to PostGIS from
OpenStreetMap. The structure of the table is open to the user. The only mandatory columns are
“gid” that holds a unique identifier for each row and “the_geom” that holds the geometry
information. The geometry should be of type “polyline”.

The above query adds additional columns to the streets table and populates them. These columns
are needed by pgrouting and include the following:

• source, target: Source and target columns that hold the id's of each source and target
node for a street segment. These columns define the directivity of the network
segments in case a directed network graph analysis is carried out.

• length: a default cost attribute that simply holds the length of each street segment in
meters. Other useful cost attributes that can be defined separately by the user include,
for example, travel time to pass through a street segment.

Note that typically when GIS files are loaded into the database for use with pgrouting, they do not
have topology information associated with them. To create a useful topology, the data needs to be
“noded”. This means that where two or more roads form an intersection a node should be placed
and all the road segments need to be broken at the intersection. This assumes that one can
navigate from any of these segments to any other segment via that intersection.

The graph analysis functions can be used to help see where there may be topology problems in
the data. If there is a need to node the data, there is also a function available in pgrouting called
pgr_nodeNetwork(). This function splits ALL crossing segments and nodes them. There are some
cases where this might NOT be the right thing to do. For example, when there is an overpass and
underpass intersection, these should not be noded, but pgr_nodeNetwork() does not know that is
the case and will node them, which is not good because then the router will believe it is able to
turn off the overpass onto the underpass like it was a flat 2D intersection.

30

--

--2. create route stops from sample points

--(note: a random subset of the sample points is used. sample points should have same SRID as
streetnetwork)

--

SELECT * FROM pgr_createroutestops('routing.osm_streets_vertices_pgr',
'routing.samplepoints_sp001', 150);

This query creates a defined number of (unordered) route stops from a set of sampling points.
First, the sampling points are filtered and mapped on to the street network to define route stops
that represent nodes of the street network. The closest node of the street network is selected for
each sampling point as route stop using a straight line distance from point-to-point. Only one route
stop is selected in case multiple sampling points refer to the same network node. This effectively
filters the sampling points based on their accessibility. The number of route stops can be defined
by the user in case a sub-sampling of the sampling points is desired for the routing. In such case,
a random selection of the sampling points is done before mapping the route stops.

--

--3. order route stops using TSP with custom cost attribute

--(note: use route stops id minus one to define start and stop point = index of points in cost matrix)

--

DROP TABLE IF EXISTS routing.route_stops_tsp;

SELECT seq, a.id+1 as id, b.node as id2, b.the_geom

 INTO routing.route_stops_tsp FROM pgr_tsp(

 (SELECT dmatrix from pgr_makecostmatrix('routing.route_stops',
 'routing.osm_streets', 'length'))::float8[], 0) a

 LEFT JOIN routing.route_stops b

 ON (a.id+1 = b.id);

The standard implementation of the TSP solver in pgrouting is based on ordering the points using
straight line (euclidean) distance between nodes. This is a fast, but not exact solution that
becomes increasingly inaccurate when the street layout is diverging from a regular dense network
towards a sparse irregular network. Especially when there are rivers and bridges present, a TSP
solution based on euclidean distance becomes inaccurate, and a more exact solution that uses the
street network itself to calculate the cost factor is needed.

The above query orders a set of points using the TSP solver with a custom cost matrix, where the
costs are calculated on the street network. The cost is defined in a column of the street table and
is calculated for each row of the table. The cost is passed on to the function by defining the column

31

name of the cost attribute (here 'length'). The node and end node of the route can then be passed
on to the function. If only a start node is defined, the end node will be chosen closest to the start
node in order to force a loop ordering.

--

--4. compute shortest path across all ordered stops

--

SELECT * FROM pgr_dijkstramulti('routing.routestops_sp001_tsp', 'routing.osm_streets', 'length');

Once the route stops are ordered by the TSP solver, this query runs a Dijkstra algorithm multiple
times between any ordered stop and its successor stop to calculate the shortest path across all the
stops.

QGIS processing scripts

In QGIS, the Processing Toolbox is a geoprocessing environment that can be used to call native
and third-party algorithms. The tools are subdivided in scripts and models.

The scripts are used to execute a single algorithm or run a batch process based on that algorithm.
Each script is an ASCII file containing a header and body, where the header contains a set of
special instructions to automatically generate the graphical user interface of the script itself.

The models refer to a graphical processing environment recently introduced in QGIS. This
framework allows for combining different algorithms, possibly developed in different environments
(R, GRASS, SAGA, OTB, etc.) in a single processing pipeline which is defined by visual blocks.
Contrary to the scripts, the models are saved in a binary format and cannot be directly edited.

The routing engine and all the functions mentioned above have been transferred into scripts that
can be loaded to the QGIS processing toolbar. The body of the script in this case is composed of
R code that calls the according pgsql functions that have been described in the previous section.
The R scripts in this case act as simple wrappers for the pgsql functions. The following scripts are
available:

• GenerateRouteNetwork (see Figure 12).

• GenerateRouteStops.

• OrderRouteStops.

• RouteDijkstra.

Input parameters for the different scripts are the same as described above for the pgsql functions
and can be entered via the user-interface along with the appropriate database connection.
Documentation of the scripts and their parameters is given directly within the user interface in the
form of a help menu.

32

Figure 12 Example dialogue of the GenerateRouteNetwork scripts, that can be accessed via the QGIS
processing toolbar (right).

Installation

The scripts and models can be downloaded from the github repository under

https://github.com/GFZ-Centre-for-Early-Warning/REM_optimized_routing

Linux: copy all the files from the folder “rscripts” to the folder “~/.qgis2/processing/rscripts”. The
files with extension “.help” contain a short documentation about the individual scripts.

Windows: same procedure, with the related paths (always in the user´s Documents folder).

The processing scripts are available in QGIS under the Processing->Toolbox menu item, which
provides a simple graphical interface. When starting QGIS, all available scripts and models are
automatically loaded.

In order to run the scripts, a spatially enabled database with pgrouting enabled has to be present
in the system. Please note that R scripts have to be explicitly activated in the Processing Toolbox
Settings of QGIS.

33

	Contents
	Introduction
	The REM Platform
	Main components
	REM Database
	Assets taxonomy
	Information life-cycle support

	Main operational tools
	Survey planning
	REM_SATEX tool
	REM optimized routing tool

	In situ survey deployment
	The GFZ-MOMA system
	The REM_RRVS tool

	Outlook and conclusions
	Suggested reading
	Appendix A – REM – Taxonomy
	SQL / pgsql functions package
	QGIS processing scripts
	Installation

