

Task C Rapid and low-cost in-situ building vulnerability assessment

Yuri Petryna, Sergey Tyagunov Technische Universität Berlin, Germany

AUTH, Thessaloniki, Greece

(September-October 2015)

Faculty of Philosophy

Administration building

School buildings, Cologne, Germany

(November-December 2015)

NN	School		General information						
			Year of construction - 1956						
1	Humboldt-Gymnasium		Number of schoolchildren - 1200						
			Structural system – mixed, RC, masonry						
	Alfred-Müller-Armack		Year of construction - 2007						
2		Separate and Second	Number of pupils – 3000 (800)						
	Berufskolleg		Structural system – masonry shear walls						
			Year of construction – ca. 1965						
3	Henry-Ford-Realschule		Number of schoolchildren - 850						
			Structural system – mixed, RC, masonry						
		Diver Mannes	Year of construction – ca. 1960						
4	Berufskolleg Ehrenfeld		Number of schoolchildren - not specified						
		and and an and a second	Structural system – mixed, RC, masonry						
			Year of construction - 1969						
5	Otto-Lilienthal-Schule	a starting at	Number of schoolchildren – not specified						
			Structural system – mixed, RC, masonry						
			Year of construction - 1960s						
6	Gymnasium Thusnelda-straße		Number of schoolchildren - 843						
			Structural system – mixed, RC, masonry						
			Year of construction – not specified						
7	Gymnasium Kreuzgasse		Number of schoolchildren - 979						
	namik		Structural system – mixed, RC, masonry						
< Dy			SID						

School buildings, Cologne, Germany

RC frame, masonry in-fill and shear walls

Mixed: RC, masonry

Masonry shear walls

Mixed: RC, masonry

School buildings, Cologne, Germany

Mixed: RC, masonry

Mixed: RC, masonry

RC frame, in-fill walls, shear walls

shear wall, masonry

Dynamik

Statik

Knowledge levels and corresponding methods of analysis (EN 1998-3:2005)

	KL1: Limited knowledge	KL2: Normal knowledge	KL3: Full knowledge			
Geometry	From original outline construction drawings with sample visual survey or from full survey	From original outline construction drawings with sample visual survey or from full survey	From original outline construction drawings with sample visual survey or from full survey			
Details	Simulated design in accordance with relevant practice and from limited in- situ inspection	From incomplete original detailed construction drawings with limited in-situ inspection or from extended in-situ inspection	From original detailed construction drawings with limited in-situ inspection or from comprehensive in- situ inspection			
Material	Default values in accordance with standards of the time of construction and from limited in-situ testing	From original design specifications with limited in-situ testing or from extended in-situ testing	From original test reports with limited in-situ testing or from comprehensive in situ testing			
Analysis	Linear analysis methods, either static or dynamic	Linear or nonlinear analysis methods, either static or dynamic	Linear or nonlinear analysis methods, either static or dynamic			

Structural survey and data collection

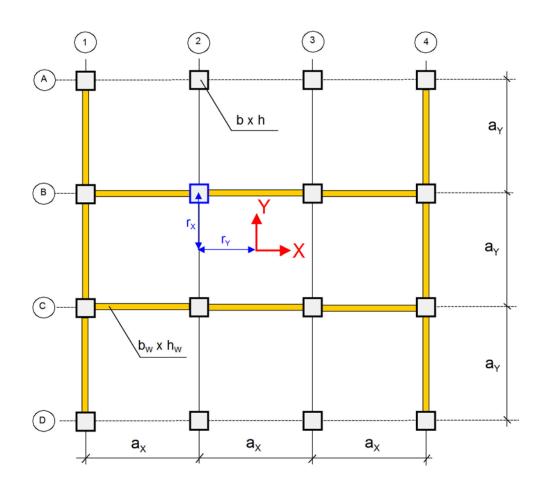
- design documentation (if available)
- simulated design (site-specific construction technology)
- Iimited in-situ inspection
- visual survey
- vibration measurements
- non-destructive in-situ testing

The information to be collected for the structural modeling includes :

- current physical condition of the structural elements and possible presence of damage or degradation;
- geometry (including overall structural geometry and member sizes, possible geometrical distortions or deficiencies);
- structural details (presence and amount of steel reinforcement in columns, beams and walls and depth of concrete cover);
- mechanical properties of construction materials (in particular, concrete strength and elasticity modulus, steel yield strength, ultimate strength and ultimate strain).

Even if the original documentation is available, in-situ inspection, first of all, should check correspondence between the available drawings and the actual state of the existing structure.

Dynamik


Statik

Data needed for the modelling and vulnerability assessment

No.	Data type				
1	Lateral load-resisting system and material of bearing structures	1			
2	Overall dimensions and shape of the building	1			
3	Presence and location of separation joints	1			
4	Presence of irregularities (physical or geometrical / in plan or in elevation)	1			
5	Dimensions and location of structural elements (columns, walls, slabs)				
6	Cross-sections of the structural members and their material properties (strength, elastic moduli, specific density)	1			
7	Year of construction (modification)	2			
8	Occupancy of the building	2			
9	Non-structural elements and other building components, which can contribute to the stiffness and/or mass distribution	2			
10	State of the preservation of the building (structural system)	2			
11	Depth and type of foundation	2			
12	Local soil conditions	2			
13	Position of the building with respect to the neighboring buildings	2			
Dynan	Dynamik				

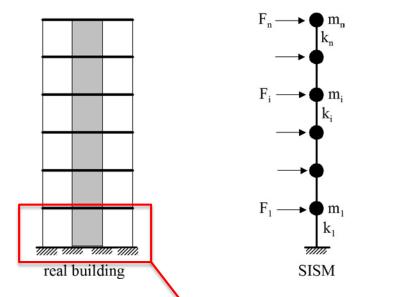
Statik

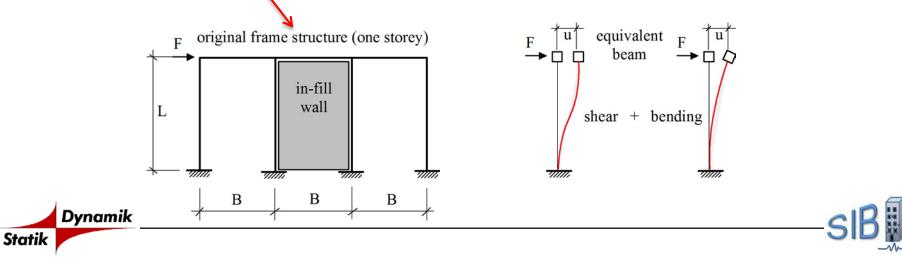
Data needed for the modelling and vulnerability assessment

Structural members

- Columns
- Girders
- Walls
- Slabs

with their


- Position
- Dimensions
- Material properties


Simplified integral structural model (SISM)

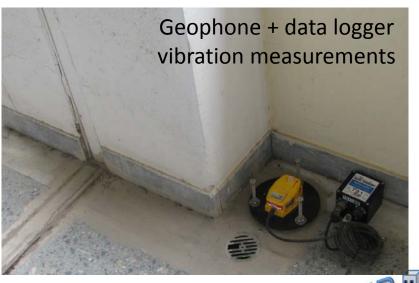

Stiffness matrix	$\mathbf{K} = \begin{bmatrix} k_1 + k_2 & -k_2 & 0\\ -k_2 & k_2 + k_3 & -k_3\\ 0 & -k_3 & k_3 \end{bmatrix}$
Mass matrix	$\boldsymbol{M} = \begin{bmatrix} m_1 & 0 & 0 \\ 0 & m_2 & 0 \\ 0 & 0 & m_3 \end{bmatrix}$
Modal analysis:	$(K-\Omega M)\Phi=0$

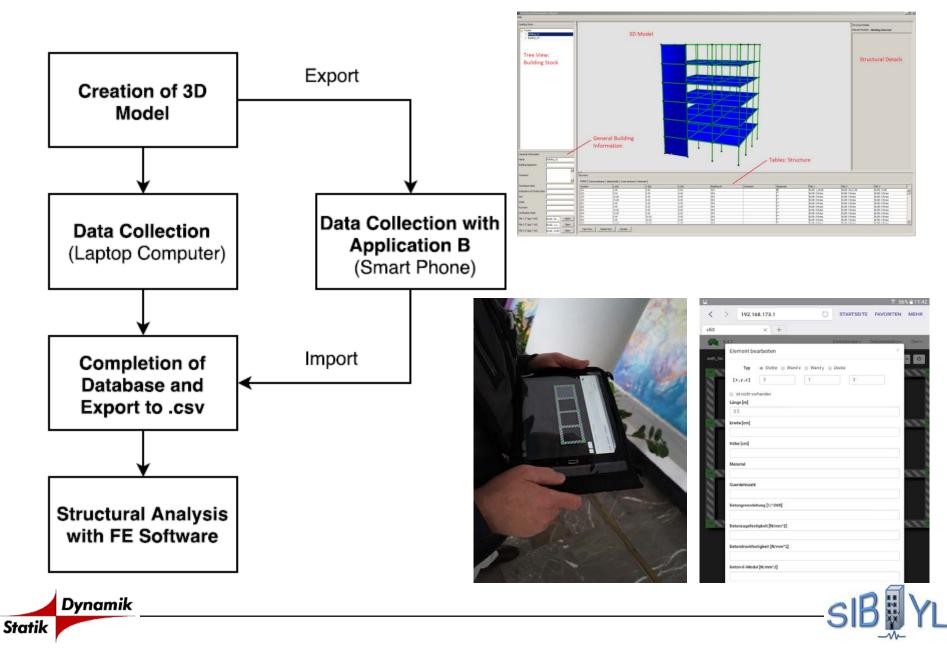
Comparison: measurements vs. calculation

Each story will be replaced by an equivalent beam element with stiffness k_i and mass m_i (both bending and shear deformations are into account)

Statik

Data collection tools and methods




Schmidthammer rebound test

NDT tools

Ferroscan: reinforcement location

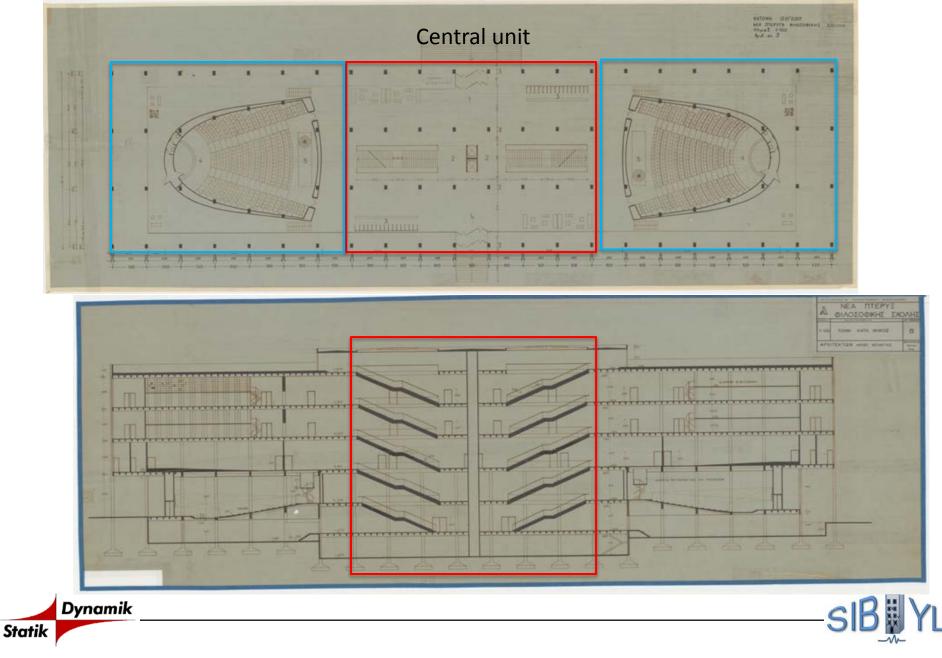
Microsoft Excel sheets

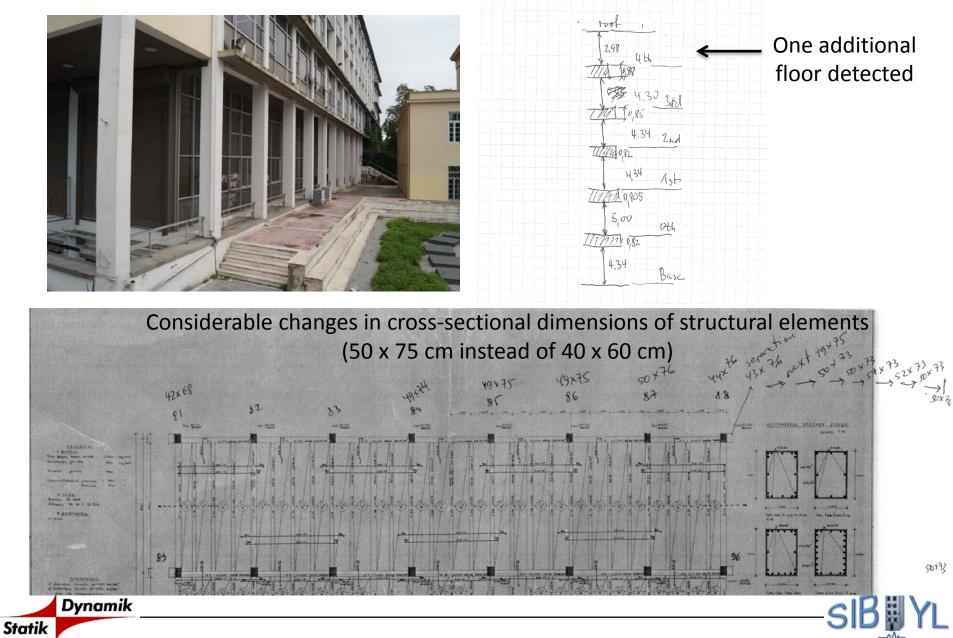
	А	В	С	D	E	F	G	Н	I	J
	Building									
2	Nfl	5	Length X	33.6	E-Modul	30000	Poisson's ratio	0.2		
3	Н	5.8	Length Y	25.5	Alpha	1				
4	Input									
5	grid of co	lumns								
6	Number of Floor	Total number of columns in x- direction	Total number of Columns in y- direction	Center dis- tance in x	Center dis- tance in y	x-width	y-width	Diameter (if round, else 0)	start- coordinate x	start- coordinate y
7										
8										
9	No unifor	m grid of	colums							
10	Number of Floor	x-coordinate	y-coordinate	x-width	y-width	diameter (if round)				
11										
12									(if start- start-	
13	Core									
14	Number of Floor	x-coordinate (center)	y-coordinate (center)	x-width	y-width	wall thickness x	wall thickness Y			
15										
16										
17	Walls									
18	Number of Floor	coordinate x1	coordinate y1	coordinate x2	coordinate y2	wall thickness				
19										
20										
21	floor	floor Number of Number of number of columns cores shells		number of shells						
22	1	32	1	0						
22	2	52	1	0						
23	2									
24	د ۸									
1	Building	g 🖉 1st Floor 🖉	2nd Floor / 3rd	Floor 📈 4th Floo	r 🖌 5th Floor 🏒					

Microsoft Excel sheets: floor information

	А	В	С	D	E	F	G	Н	- I	J	К	L	М	N	0	Р	Q
1	1st Floor																
	Querschnitts																
	fläche										Delete er	anti rour					
2	gesamt	lxges	lyges	Xs	Ys	Xm	Ym	lxges	lyges		Delete el	npty rows	Nco	Nk	Ns		
3	13.08	2.6344	0.8061	16.8	12.75	16.8	12.75	1454.1544	1084.5561				32	1	0		
8	Stützen												Nx	Ny	Bx	Ву	
9	nco	x	У	bx	by	r	Α	lx	ly	ex	ey		8	4	4.8	8.5	
10	1	0	0	0.5	0.75	0	0.375	0.01757813	0.0078125	16.8	12.75		kuu	1487.3			
11	2	4.8	0	0.5	0.75	0	0.375	0.01757813	0.0078125	12	12.75		kff	16696			
12	3	9.6	0	0.5	0.75	0	0.375	0.01757813	0.0078125	7.2	12.75		kpp	595862			
13	4	14.4	0	0.5	0.75	0	0.375	0.01757813	0.0078125	2.4	12.75		kuf	4313.3			
14	5	19.2	0	0.5	0.75	0	0.375	0.01757813	0.0078125	2.4	12.75		kfp	3418			
15	6	24	0	0.5	0.75	0	0.375	0.01757813	0.0078125	7.2	12.75						
16	7	28.8	0	0.5	0.75	0	0.375	0.01757813	0.0078125	12	12.75		1487.3	4313.3	0	1	0.00269
17	8	33.6	0	0.5	0.75	0	0.375	0.01757813	0.0078125	16.8	12.75		4313.3	16696	3418	0	-0.0007
18	9	0	8.5	0.5	0.75	0	0.375	0.01757813	0.0078125	16.8	4.25		0	3418	595862	0	4E-06
19	10	4.8	8.5	0.5	0.75	0	0.375	0.01757813	0.0078125	12	4.25						
20	11	9.6	8.5	0.5	0.75	0	0.375	0.01757813	0.0078125	7.2	4.25		371.74	Sti	ffness	s x-di	rection
21	12	14.4	8.5	0.5	0.75	0	0.375	0.01757813	0.0078125	2.4	4.25						
22	13	19.2	8.5	0.5	0.75	0	0.375	0.01757813	0.0078125	2.4	4.25		kuu	4860.7			
23	14	24	8.5	0.5	0.75	0	0.375	0.01757813	0.0078125	7.2	4.25		kff	45988			
24	15	28.8	8.5	0.5	0.75	0	0.375	0.01757813	0.0078125	12	4.25		kpp	527586			
25	16	33.6	8.5	0.5	0.75	0	0.375	0.01757813	0.0078125	16.8	4.25		kuf	14096			
26	17	0	17	0.5	0.75	0	0.375	0.01757813	0.0078125	16.8	4.25		kfp	2102.1			
27	18	4.8	17	0.5	0.75	0	0.375	0.01757813	0.0078125	12	4.25						
28	19	9.6	17	0.5	0.75	0	0.375	0.01757813	0.0078125	7.2	4.25		4860.7	14096	0	1	0.00185
29	20	14.4	17	0.5	0.75	0	0.375	0.01757813	0.0078125	2.4	4.25		14096	45988	2102.1	0	-0.0006
30	21	19.2	17	0.5	0.75	0	0.375	0.01757813	0.0078125	2.4	4.25		0	2102.1	527586	0	2.3E-06
31	22	24	17	0.5	0.75	0	0.375	0.01757813	0.0078125	7.2	4.25						
32	23	28.8	17	0.5	0.75	0	0.375	0.01757813	0.0078125	12	4.25		539.26	Sti	ffness	s v-di	rection
33	24	33.6	17	0.5	0.75	0	0.375	0.01757813	0.0078125	16.8	4.25			00		, , ,	
34	25	0	25.5	0.5	0.75	0	0.375	0.01757813	0.0078125	16.8	12.75						
35	26	4.8	25.5	0.5	0.75	0	0.375	0.01757813	0.0078125	12	12.75						
36	27	9.6	25.5	0.5		0	0.375	0.01757813	0.0078125	7.2	12.75						
1	🕩 🕨 🛛 Buildi	ng 1st Floor /	2nd Floor 📈	3rd Floor 📈 41	th Floor 📈 5th	n Floor 🦯 📜 🖊									◀		

Case study: The building of the Faculty of Philosophy, AUTH





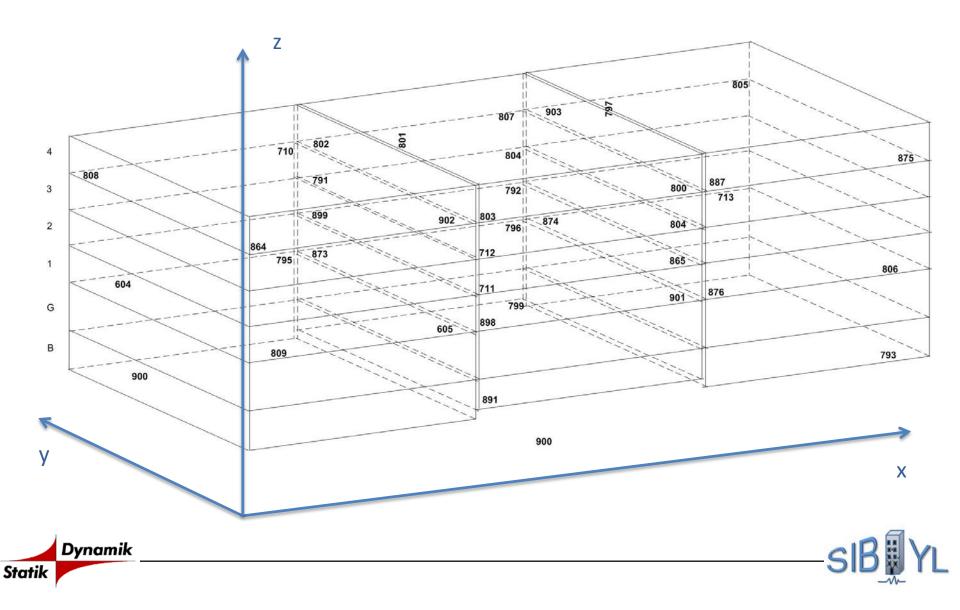
Original design drawings

In-situ structural survey and data collection

Ambient vibration measurements, system identification and modal analysis for the building of the Faculty of Philosophy

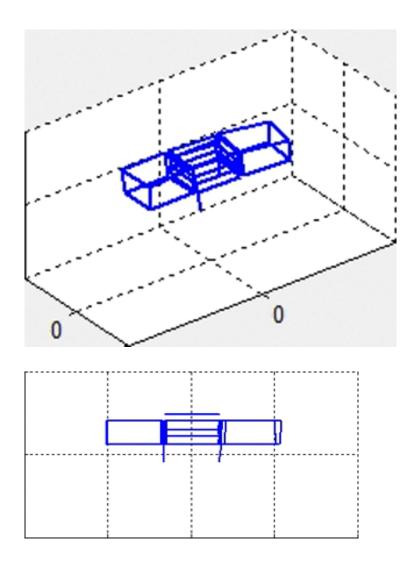
Ambient vibrations are recorded using seismic stations, each of them composed by a 24 bit DSS-CUBE3 digitizer connected to a 4.5Hz three-component geophone. The sampling rate is set to 400 Hz and the timing is provided by a build-in GPS. The identification of the eigenfrequencies and mode shapes is performed by use of the MACEC software on the base of time intervals of 180 s duration.

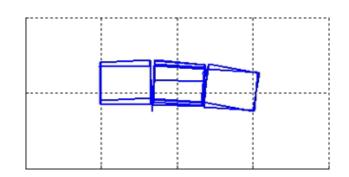
Dynamik

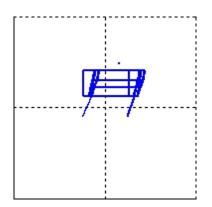

Statik

Spatial arrangement of the sensors

Minimum set: 1 on the ground, 2 on the roof/top

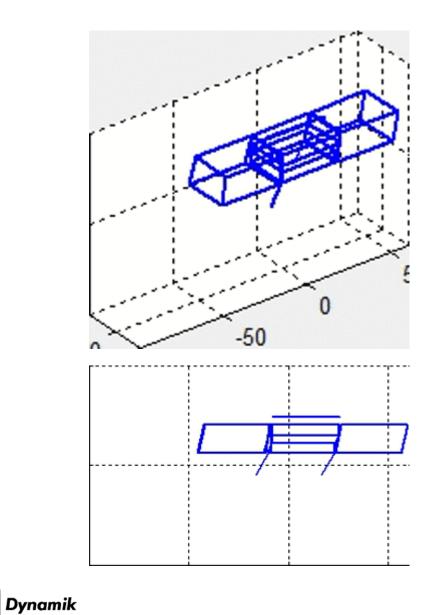


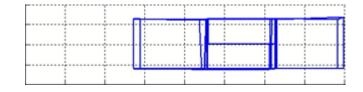


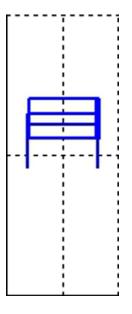

Dynamik

Statik

1st mode (f=1.60 Hz)

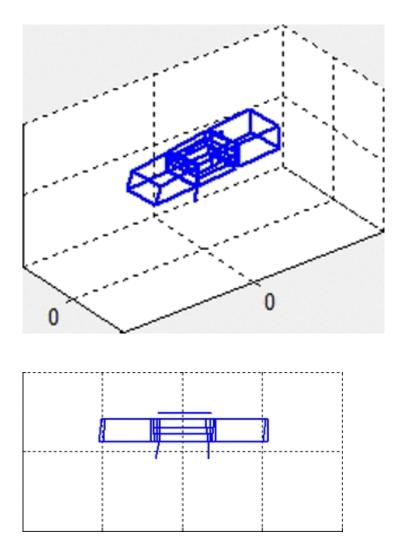


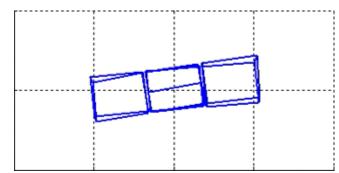


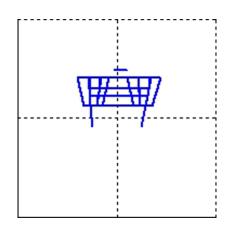


Statik

2nd mode (f=1.72 Hz)

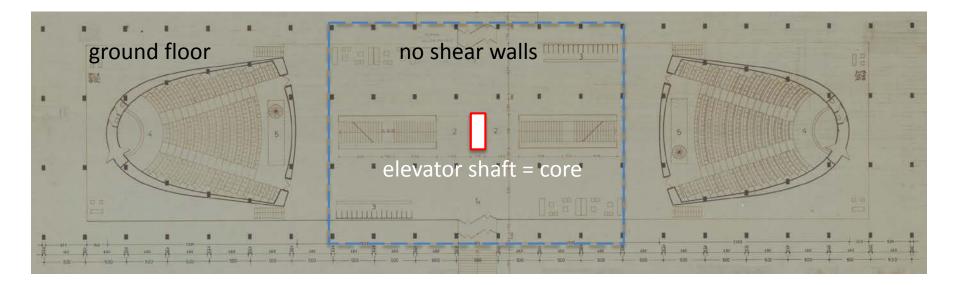


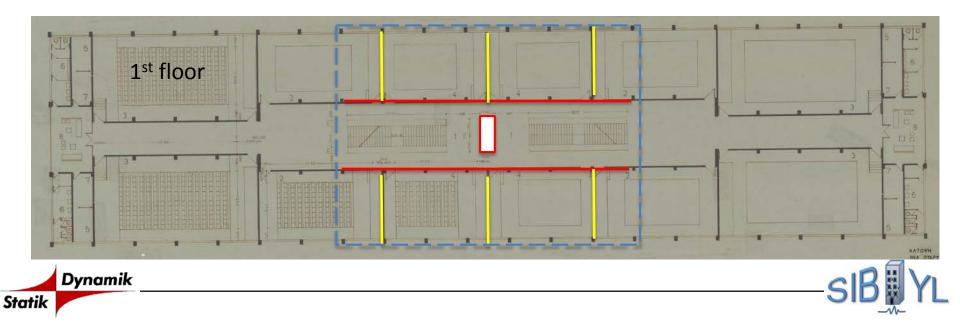


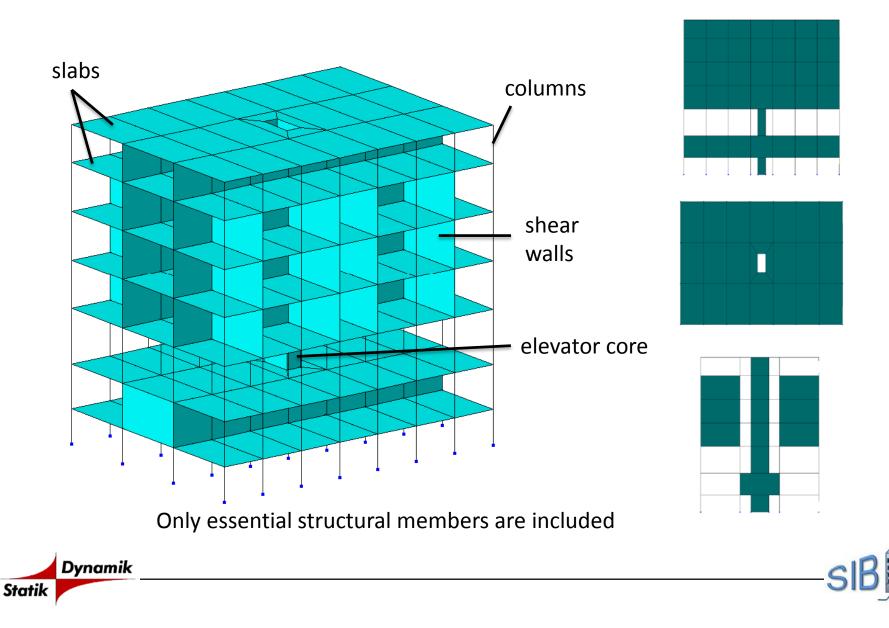

Dynamik

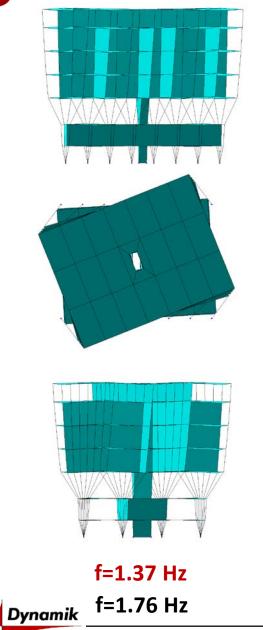
Statik

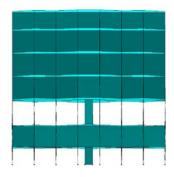
3rd mode (f=1.76)

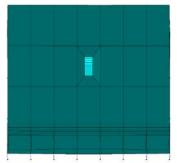


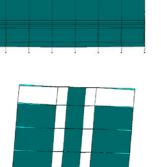


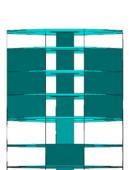

Relevant structural members

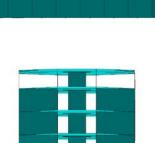

Simplified FEM Modelling for demonstration of structural behavior



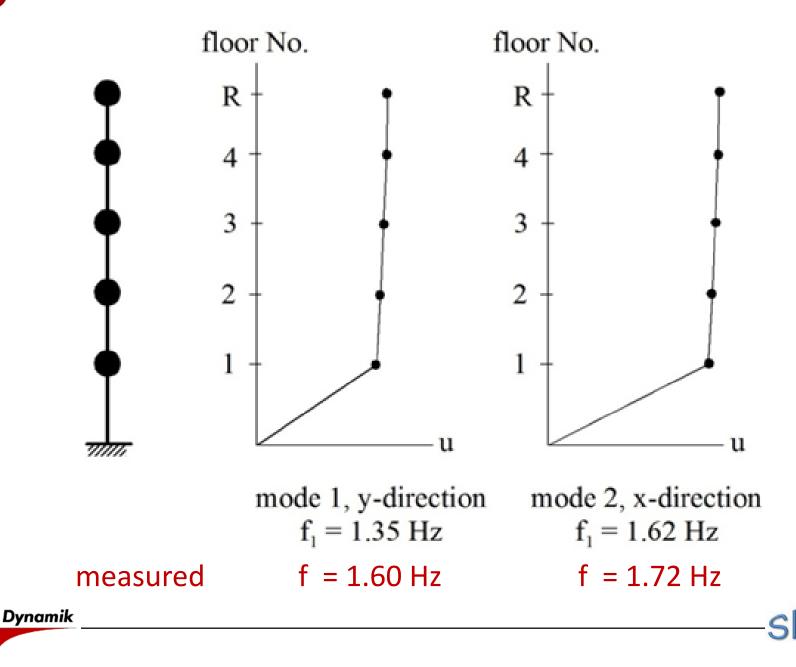



Statik


Mode shapes (comparison with OMA)

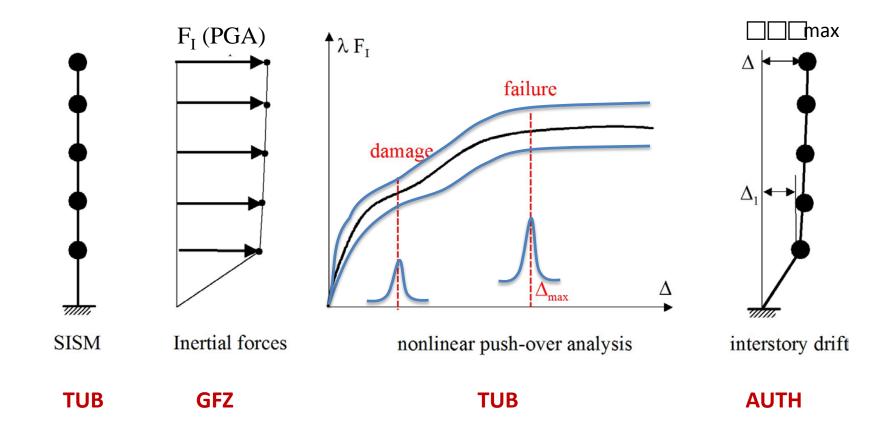


f=1.94 Hz f=1.72 Hz



Statik

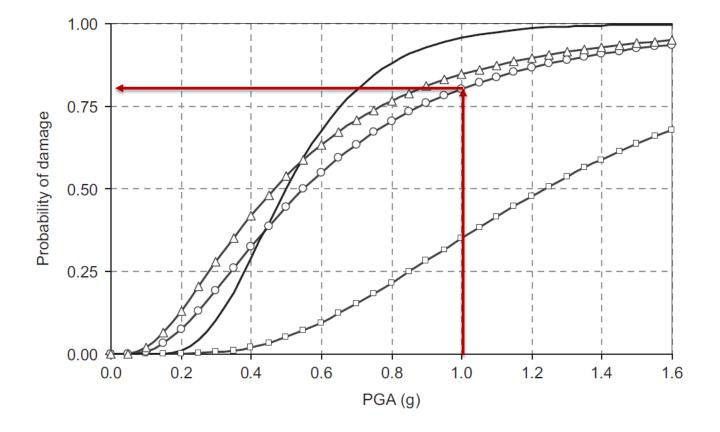
Model validation by use of vibration measurements



Dynamik

Statik

Nonlinear push-over analysis and damage states



The variation of structural properties according in the framework of Monte-Carlo simulation provides a statistical scatter of interstory drift, which is necessary to calculate \rightarrow Fragility curves

Fragility curves

http://www.sibyl-project.eu/

Thanks for your attention

